1. Consider the linear transformation which rotates the plane by $\pi/2$ degrees clockwise:

$$R: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\mathbf{x} \mapsto \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} \mathbf{x}$$

(a) Find the eigenvalues of [R]

Solution: The characteristic polynomial is $\lambda^2 + 1$ which has roots $\lambda = \pm i$

(b) For each eigenvalue find a basis for its eigenspace

Solution: For $\lambda = -i$ We need a basis for $\operatorname{Nul}([R] - (-i)I) = \operatorname{Nul}\begin{pmatrix} i & 1 \\ -1 & i \end{bmatrix}$. This has basis $\{ \begin{bmatrix} i \\ 1 \end{bmatrix} \}$. Taking conjugates we find a basis for the eigenspace of eigenvalue $\lambda = i$ is $\{ \begin{bmatrix} -i \\ 1 \end{bmatrix} \}$.

- 2. For each, give an example of the following, or explain why it can't exist:
 - (a) A 3×3 matrix, A with real entries but no real eigenvalues.

Solution: This can't happen, as the characteristic polynomial of A has degree 3, and any odd degree polynomial with real coefficients has to have a real root.

(b) A 3×3 matrix with real entries and exactly 1 real eigenvalue.

Solution: This can happen, for example if the characteristic polynomial was $-\lambda(\lambda^2 + 1)$, which has exactly one real root. This happens for example if $A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.