1. Consider the linear transformation which rotates the plane by $\pi / 2$ degrees clockwise:

$$
\begin{gathered}
R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
\mathbf{x} \mapsto\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \mathbf{x}
\end{gathered}
$$

(a) Find the eigenvalues of $[R]$

Solution: The characteristic polynomial is $\lambda^{2}+1$ which has roots $\lambda= \pm i$
(b) For each eigenvalue find a basis for its eigenspace

Solution: For $\lambda=-i$ We need a basis for $\operatorname{Nul}([R]-(-i) I)=\operatorname{Nul}\left(\left[\begin{array}{cc}i & 1 \\ -1 & i\end{array}\right]\right.$. This has basis $\left\{\left[\begin{array}{l}i \\ 1\end{array}\right]\right\}$. Taking conjugates we find a basis for the eigenspace of eigenvalue $\lambda=i$ is $\left\{\left[\begin{array}{c}-i \\ 1\end{array}\right]\right\}$.
2. For each, give an example of the following, or explain why it can't exist:
(a) A 3×3 matrix, A with real entries but no real eigenvalues.

Solution: This can't happen, as the characteristic polynomial of A has degree 3 , and any odd degree polynomial with real coefficients has to have a real root.
(b) A 3×3 matrix with real entries and exactly 1 real eigenvalue.

Solution: This can happen, for example if the characteristic polynomial was $-\lambda\left(\lambda^{2}+1\right)$, which has exactly one real root. This happens for example if $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

