Name: \qquad
Section: \qquad

1. Consider the linear transformation which rotates the plane by $\pi / 2$ degrees clockwise:

$$
\begin{gathered}
R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
\mathbf{x} \mapsto\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \mathbf{x}
\end{gathered}
$$

(a) Find the eigenvalues of $[R]$
(b) For each eigenvalue find a basis for its eigenspace
2. For each, give an example of the following, or explain why it can't exist:
(a) A 3×3 matrix, A with real entries but no real eigenvalues.
(b) A 3×3 matrix with real entries and exactly 1 real eigenvalue.

