Sample Quiz 9, MATH 54, Fall 2015

Name:			
Section:			

1. Consider the linear transformation which rotates the plane by $\pi/2$ degrees clockwise:

$$R: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\mathbf{x} \mapsto \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x}$$

(a) Find the eigenvalues of [R]

(b) For each eigenvalue find a basis for its eigenspace

- 2. For each, give an example of the following, or explain why it can't exist:
 - (a) A 3×3 matrix, A with real entries but no real eigenvalues.
 - (b) A 3×3 matrix with real entries and exactly 1 real eigenvalue.