Math 54 Quiz 8

October 16, 2015

1. (a) Let $B=\left\{b_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right], b_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and $C=\left\{c_{1}=\left[\begin{array}{c}-1 \\ 3\end{array}\right], c_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$ be bases of \mathbb{R}^{2}.
Find the change-of-coordinates matrix from B to C.
(b) Let $\mathrm{x}=\left[\begin{array}{c}5 \\ 10\end{array}\right]$. Using the fact that $[x]_{B}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, find the coordinates of x with respect to the C basis.
Solution: (a) P from B to C is $\left[\begin{array}{cc}7 / 5 & 4 / 5 \\ -6 / 5 & -7 / 5\end{array}\right]$.
(b) Multiply P on the right by $[x]_{B}$ to get $[x]_{C}=\left[\begin{array}{c}5 \\ -5\end{array}\right]$. A simple row reduction lets you use this answer to check your matrix from part (a). Make sure you see why this is true.
2. Find the eigenvalues of $A=\left[\begin{array}{ll}3 & 4 \\ 3 & 2\end{array}\right]$ and one corresponding eigenvector for each eigenvalue.
Solution: The eigenvalues of A are 6 and -1 .
One corresponding eigenvector for $\lambda=6$ is $\left[\begin{array}{c}4 / 3 \\ 1\end{array}\right]$. Scalar multiples of this vector except for the vector $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ would be acceptable eigenvectors.
A corresponding eigenvector in the eigenspace of A for $\lambda=-1$ is $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Again, scalar multiples of this vector except for the zero vector are acceptable eigenvectors.
