Name: $\qquad$
Section: $\qquad$

1. Consider the basis $\mathcal{B}=\left\{1-x^{2}, 2+4 x+x^{2},-4 x-2 x^{2}\right\}$ of the space of polynomials with degree less than or equal to 2 with real coefficeints, $\mathcal{P}_{2}$. Find the coordinates of $x^{2}+x+1$ in this basis.
Solution: We are trying to find $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ such that

$$
a_{1}\left(1-x^{2}\right)+a_{2}\left(2+4 x+x^{2}\right)+a_{3}\left(-4 x-2 x^{2}\right)=1+x+x^{2} .
$$

If we use the standard basis $\left\{1, x, x^{2}\right\}$ to transform this into a problem in $\mathbb{R}^{3}$, we are trying to solve

$$
a_{1}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+a_{2}\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right)+a_{3}\left(\begin{array}{c}
0 \\
-4 \\
-2
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

Thus, we proceed by row reduction (or your preferred method). We have

$$
\left(\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 4 & -4 & 1 \\
-1 & 1 & -2 & 1
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 1 & -1 & 1 / 4 \\
0 & 3 & -2 & 2
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 2 & 1 / 2 \\
0 & 1 & -1 & 1 / 4 \\
0 & 0 & 1 & 5 / 4
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 3 / 2 \\
0 & 0 & 1 & 5 / 4
\end{array}\right) .
$$

Therefore, coordinates of $x^{2}+x+1$ with respect to $\mathcal{B}$ are

$$
\left(\begin{array}{l}
-2 \\
3 / 2 \\
5 / 4
\end{array}\right)
$$

2. Consider the linear transformation $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ given by $T(A)=B A$ where $B$ is the matrix

$$
B=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

Calculate the matrix of $T$ with respect to the standard basis for $M_{2 \times 2}$, i.e., the basis

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} .
$$

Solution: We compute

$$
\begin{aligned}
& T\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
1 & 0
\end{array}\right), \\
& T\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right), \\
& T\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),
\end{aligned}
$$

and

$$
T\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
$$

Therefore, the matrix for $T$ with respect to the standard basis is

$$
\left(\begin{array}{llll}
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

