You have 20 minutes to complete this quiz.

Name: \qquad

1. (5 points) Use Cramer's Rule to solve the system:
$4 x_{1}-3 x_{2}=-3$
$-6 x_{1}+2 x_{2}=4$
$A=\left[\begin{array}{cc}4 & -3 \\ -6 & 2\end{array}\right] \cdot b=\left[\begin{array}{c}-3 \\ 4\end{array}\right] A_{1}(b)=\left[\begin{array}{cc}-3 & -3 \\ 4 & 2\end{array}\right] A_{2}(b)=\left[\begin{array}{cc}4 & -3 \\ -6 & 4\end{array}\right]$
$\operatorname{det}(\mathrm{A})=-10, \operatorname{det}\left(A_{1}(b)\right)=6, \operatorname{det}\left(A_{2}(b)\right)=-2$
$x_{1}=\frac{6}{-10}=\frac{-3}{5}, x_{2}=\frac{-2}{-10}=\frac{1}{5}$
2. (5 points) Find a basis for the span of the following polynomials in the vector spaces of all polynomials: $\left\{x^{2}-1,2 x-3, x^{2}+1,4\right\}$
$v_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], v_{4}=\left[\begin{array}{l}4 \\ 0 \\ 0\end{array}\right]$
$A=\left[\begin{array}{cccc}-1 & -3 & 1 & 4 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{cccc}-1 & -3 & 1 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 4\end{array}\right]$
Pivots in the first, second, and third columns mean the basis $=$ $\left\{x^{2}-1,2 x-3, x^{2}+1\right\}$
