It is my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out.

Name and section: \qquad

1. (5 points) Compute the rank of $A=\left[\begin{array}{cccc}1 & -3 & 5 & 3 \\ -3 & 4 & -6 & -8 \\ 0 & -5 & 9 & 1\end{array}\right]$. What can you conclude about the dimension of the null space of A ?

Solution: The rank of a matrix is the number of pivots it has in echelon form, so we'll do row reduction. This gives

$$
\left[\begin{array}{cccc}
1 & -3 & 5 & 3 \\
-3 & 4 & -6 & -8 \\
0 & -5 & 9 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 5 & 3 \\
0 & -5 & 9 & 1 \\
0 & -5 & 9 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 5 & 3 \\
0 & -5 & 9 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We get a matrix with 2 pivots, so the rank of A is 2 , and since we know that the rank and the dimension of the null space must sum up to the number of columns, which is 4 , the dimension of the null space is $4-2=2$. (Equivalently, we know that the dimension of the null space is the number of columns without pivots.)
2. (5 points) Compute the determinant of $B=\left[\begin{array}{cccc}1 & -2 & 1 & 3 \\ 3 & -3 & 4 & 5 \\ 0 & 2 & -1 & -1 \\ -4 & 9 & -4 & -8\end{array}\right]$. Is B invertible?

Solution: It doesn't look easy to compute this determinant using cofactor expansion, so instead we'll compute it using row reduction. It helps that we already have a pivot. This gives
$\left|\begin{array}{cccc}1 & -2 & 1 & 3 \\ 3 & -3 & 4 & 5 \\ 0 & 2 & -1 & -1 \\ -4 & 9 & -4 & -8\end{array}\right|=\left|\begin{array}{cccc}1 & -2 & 1 & 3 \\ 0 & 3 & 1 & -4 \\ 0 & 2 & -1 & -1 \\ 0 & 1 & 0 & 4\end{array}\right|=-\left|\begin{array}{cccc}1 & -2 & 1 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 2 & -1 & -1 \\ 0 & 3 & 1 & -4\end{array}\right|=-\left|\begin{array}{cccc}1 & -2 & 1 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & -1 & -9 \\ 0 & 0 & 1 & -16\end{array}\right|$
At this point we can stop row reducing and just use cofactor expansion along the first two rows. This gives

$$
\left.-\left\lvert\, \begin{array}{cc}
-1 & -9 \\
1 & -16
\end{array}\right.\right]=-(16+9)=-25
$$

In particular, the determinant is not zero, so we conclude that B is invertible.

