You have 20 minutes to take this quiz, for a total of 10 points.

Name: \qquad

1. (5 points total) Given $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-2 x_{2}+x_{3},-4 x_{1}+5 x_{2}+6 x_{3}\right)$
a). (2 points) Write down the matrix of T (i.e., write down the matrix A such that $T(\mathbf{x})=A \mathbf{x}$, for any $\mathbf{x})$.

Solution. $A=\left[\begin{array}{lll}T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & T\left(\mathbf{e}_{3}\right)\end{array}\right]=\left[\begin{array}{ccc}1 & -2 & 1 \\ -4 & 5 & 6\end{array}\right]$
b). (3 points) Is $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, as given above, one-to-one? Is it onto? (answer with brief explanation)

Solution. The matrix can have at most 2 pivots and so there cannot be a pivot in every column. Thus, the transformation T can never be one-to-one. Since the matrix A above, has a pivot in each row, the transformation is onto.
2. (5 points total) $A=\left[\begin{array}{ccc}4 & 1 & 3 \\ 2 & 3 & -6 \\ -1 & 1 & -2\end{array}\right]$
a). (3 points) Calculate the inverse of A by row reduction method.

Solution. $A=\left[\begin{array}{cccccc}4 & 1 & 3 & 1 & 0 & 0 \\ 2 & 3 & -6 & 0 & 1 & 0 \\ -1 & 1 & -2 & 0 & 0 & 1\end{array}\right] \xrightarrow[\substack{R_{2}+2 R_{3}}]{\substack{+4 R_{3}}}\left[\begin{array}{cccccc}0 & 5 & -5 & 1 & 0 & 4 \\ 0 & 5 & -10 & 0 & 1 & 2 \\ -1 & 1 & -2 & 0 & 0 & 1\end{array}\right]$
$\xrightarrow{\substack{R_{1}-R_{2}}}\left[\begin{array}{cccccc}1 & -1 & 2 & 0 & 0 & -1 \\ 0 & 5 & -10 & 0 & 1 & 2 \\ 0 & 0 & 5 & 1 & -1 & 2\end{array}\right] \xrightarrow[R_{3} \div 5]{\substack{R_{2}+2 R_{3}}}\left[\begin{array}{cccccc}1 & -1 & 2 & 0 & 0 & -1 \\ 0 & 5 & 0 & 2 & -1 & 6 \\ 0 & 0 & 1 & 1 / 5 & -1 / 5 & 2 / 5\end{array}\right]$
MATH $54 \quad$ Sample Quiz $4 \quad$ Page 2 of 2
$\xrightarrow[R_{2} \div 5]{R_{1}+R_{2} / 5}\left[\begin{array}{llllll}1 & 0 & 2 & 2 / 5 & -1 / 5 & 1 / 5 \\ 0 & 1 & 0 & 2 / 5 & -1 / 5 & 6 / 5 \\ 0 & 0 & 1 & 1 / 5 & -1 / 5 & 2 / 5\end{array}\right] \xrightarrow{R_{1}-2 R_{3}}\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 1 / 5 & -3 / 5 \\ 0 & 1 & 0 & 2 / 5 & -1 / 5 & 6 / 5 \\ 0 & 0 & 1 & 1 / 5 & -1 / 5 & 2 / 5\end{array}\right]$.

Thus $A^{-1}=\frac{1}{5}\left[\begin{array}{ccc}0 & 1 & -3 \\ 2 & -1 & 6 \\ 1 & -1 & 2\end{array}\right]$
b). (2 points) Use this to solve $A \mathbf{x}=\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right]$.

Solution. Since A is invertible, $A \mathbf{x}=\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right] \Rightarrow \mathbf{x}=A^{-1}\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right]$
$=\frac{1}{5}\left[\begin{array}{ccc}0 & 1 & -3 \\ 2 & -1 & 6 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}3+12 \\ 2-3-24 \\ 1-3-8\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}15 \\ -25 \\ -10\end{array}\right]=\left[\begin{array}{c}3 \\ -5 \\ -2\end{array}\right]$

The End.

