Name: \qquad
Section: \qquad

1. Which of the following sets of vectors in \mathbb{R}^{3} contain two linearly independent vectors but no more? (Note that, geometrically, this is the same as spanning a plane).

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
-6 \\
0
\end{array}\right)\right\}, \quad\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\}, \quad\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)\right\}
$$

2. Does $\left(\begin{array}{l}5 \\ 1 \\ 5\end{array}\right)$ lie in the span of $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$? Deduce whether or not $\left\{\begin{array}{l}2 x_{1}+x_{2}=5 \\ x_{1}-x_{2}=1 \\ 3 x_{1}-x_{2}=5\end{array}\right.$ has a solution.
