$$
\text { You have } 20 \text { minutes to complete the quiz. No calculators. }
$$

Name:

1. (5 points) Find all solutions of the following linear system:

$$
\begin{aligned}
-2 x_{1}+2 x_{2} & =4 \\
x_{1}-x_{2} & =-2
\end{aligned}
$$

Solution. The first equation is -2 times the second equation. Thus, x_{1}, x_{2} solves the system if and only if it solves the second equation. For any number t, the second equation is solved by $x_{1}=t, x_{2}=2+t$.
2. (5 points) Consider the following linear system:

$$
\begin{aligned}
c x+y & =5 \\
x+y & =2
\end{aligned}
$$

For what values of c does this system have no solutions? For which values of c does it have a unique solution? For which values of c does it have infinitely many solutions?

Solution. If $c=1$, the system is

$$
\begin{aligned}
& x+y=5 \\
& x+y=2
\end{aligned}
$$

which implies that $5=2$: a contradiction. Therefore, if $c=1$, the system has no solution. So, suppose that $c \neq 1$.

Subtracting the second equation from the first yields,

$$
\begin{array}{r}
(c-1) x=3 \\
x+y=2
\end{array}
$$

As $c \neq 1$, we may divide by $c-1$ to obtain $x=\frac{3}{c-1}$. The second equation then implies that $y=2-\frac{3}{c-1}$.
Thus, if $c=1$ there is no solution and if $c \neq 1$ there is exactly one solution. In particular, for no value of c does the system have infinitely many solutions.

