Name and section: \qquad

1. (5 points) Give the general solution to the following equation:

$$
\left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]
$$

Solution:The eigenvalues of $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ are $3,-1$ and corresponding eigenvectors are $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$ for example. Then the general solution is

$$
\mathbf{y}(t)=A e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+B e^{-t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

2. (5 points) Find all possible real values for λ such that ODE $\lambda y^{\prime \prime}+y=0$ with boundary value $y(0)=0, y(\pi / 2)=0$ has non-trivial solution.
Solution:Let's discuss three cases.
If $\lambda=0$ then the ODE becomes $y=0$ which obviously has only trivial solution. So this is not the case.

If $\lambda \neq 0$ then divide on both sides by λ, we have $y^{\prime \prime}+(1 / \lambda) y=0$. The characteristic polynomial is $r^{2}+1 / \lambda=0$, so depending on the sign of λ we have two more cases:
If $\lambda<0$, then $-1 / \lambda>0$ and the roots will be $\sqrt{-1 / \lambda}$ and $-\sqrt{-1 / \lambda}$. Then the general solution is

$$
y=A e^{\sqrt{-1 / \lambda} t}+B e^{-\sqrt{-1 / \lambda t}}
$$

Then $y(0)=A+B, y(\pi / 2)=A e^{\sqrt{-1 / \lambda} \pi / 2}+B e^{-\sqrt{-1 / \lambda} \pi / 2}$. The boundary value condition is now

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{\sqrt{-1 / \lambda} \pi / 2} & e^{-\sqrt{-1 / \lambda} \pi / 2}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The determinant of the coefficient matrix of the above equation is non-zero because $\sqrt{-1 / \lambda} \pi / 2 \neq 0, \sqrt{-1 / \lambda} \pi / 2 \neq-\sqrt{-1 / \lambda} \pi / 2$. Thus we ruled out the case $\lambda<0$. If $\lambda>0$, then the roots will be $\sqrt{1 / \lambda} i$ and $-\sqrt{1 / \lambda} i$. Then the general solution is

$$
y=A \cos (\sqrt{1 / \lambda} t)+B \sin (\sqrt{1 / \lambda} t)
$$

Now by boundary value condition, $y(0)=0$, which means $A \cos (0)+B \sin (0)=A=0$. By another boundary value condition $y(\pi / 2)=0$ where

$$
y(\pi / 2)=A \cos (\sqrt{1 / \lambda} \pi / 2)+B \sin (\sqrt{1 / \lambda} \pi / 2)=B \sin (\sqrt{1 / \lambda} \pi / 2)
$$

since we already know that $A=0$.
Now we can't let B be 0 , otherwise we will have trivial solution. Then $\sin (\sqrt{1 / \lambda} \pi / 2)=0$. We know that for $\sin (x)=0$, all possible solutions are $x=n \pi$ for integers n. Then $\sqrt{1 / \lambda} \pi / 2$ must be $n \pi$ for integers n. Then the possible values for λ are $1 /\left(4 n^{2}\right)$ for all integers n.

