Name: \qquad

$$
\text { You have } 20 \text { minutes to complete the quiz. }
$$

1. Solve the given initial value problem:

$$
y^{\prime \prime \prime}-5 y^{\prime \prime}+8 y^{\prime}-4 y=0
$$

given that

$$
y(0)=-1, y^{\prime}(0)=-3, y^{\prime \prime}(0)=-6
$$

Solution: Auxillary Equation:

$$
\begin{gathered}
r^{3}-5 r^{2}+8 r-4=0 \\
(r-1)(r-2)^{2}=0 \\
r_{1}=r_{2}=2, r_{3}=1
\end{gathered}
$$

$$
\text { General Solution: } \quad y=c_{1} e^{t}+c_{2} e^{2 t}+c_{3} t e^{2 t}
$$

Take derivitive and use initial conditions: $\left\{\begin{array}{l}c_{1}+c_{2}=-1 \\ c_{1}+2 c_{2}+c_{3}=-3 \\ c_{1}+4 c_{2}+4 c_{3}=-6\end{array} \Rightarrow\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]\right.$
Solution : $y=2 e^{t}-3 r^{2 t}+t e^{2 t}$
2. Show that $\left\{x, x^{2}, x^{3}, x^{4}\right\}$ are linearly independent on $(-\infty, \infty)$.

Solution: We can show directly without appealing to differential equations. Suppose $c_{1} x+c_{2} x^{2}+$ $c_{3} x^{3}+c_{4} x^{4}=0$. That is, it is identically zero for all x. Then since a polynomial of degree $n, n>0$ has at most n roots, this must be a polynomial of degree 0 , i.e. the constant polynomial 0 . Thus $c_{1}, c_{2}, c_{3}, c_{4}=0$, so these functions are linearly independent.

Alternatively, notice that $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ are all solutions to $y^{(5)}=0$, and apply the Wronskian method.

$$
W=\left|\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & x^{4} \\
0 & 1 & 2 x & 3 x^{2} & 4 x^{3} \\
0 & 0 & 2 & 6 x & 12 x^{2} \\
0 & 0 & 0 & 6 & 24 x \\
0 & 0 & 0 & 0 & 24
\end{array}\right|=1 \times 1 \times 2 \times 6 \times 24=288 \neq 0
$$

Since the Wronskian is nonzero, the functions $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ are linearly independent on $(-\infty, \infty)$, and so is the subset $\left\{x, x^{2}, x^{3}, x^{4}\right\}$ linearly independent on $(-\infty, \infty)$.

