Name: _____

You have 20 minutes to complete the quiz.

1. (5 points) Solve the differential equation y'' - y = 0 subject to the initial conditions y(0) = 5, y'(0) = -1.

Solution: The auxiliary polynomial is $r^2 - 1 = (r - 1)(r + 1)$, so there are two distinct real roots, $r_1 = 1$ and $r_2 = -1$. The general solution is $y(t) = c_1e^t + c_2e^{-t}$. Taking the derivative, we have $y'(t) = c_1e^t - c_2e^{-t}$. Then setting t = 0 gives $y(0) = c_1 + c_2 = 5$ and $y'(0) = c_1 - c_2 = -1$. This linear system has the solution $c_1 = 2, c_2 = 3$, so the solution to the differential equation is $y(t) = 2e^t + 3e^{-t}$.

2. (a) (2 points) Find the general solution to the homogeneous equation y'' + 2y' + 2y = 0. (Your final answer should only involve real-valued functions.)

Solution: The auxiliary equation is $r^2 + 2r + 2 = 0$, whose roots are $\frac{-2\pm\sqrt{4-8}}{2} = -1 \pm i$. The complex solutions to the differential equation are spanned by $e^{(-1+i)t}$ and $e^{(-1-i)t}$, but we want our functions to be real-valued, so we use $e^{-t} \cos t$ and $e^{-t} \sin t$ instead. (Recall: $e^{(-1+i)t} = e^{-t}e^{it} = e^{-t}(\cos t + i\sin t)$; we are using the real and imaginary parts of this function. We can similarly calculate $e^{(-1-i)t} = e^{-t}(\cos t - i\sin t)$.) Our general solution is $y(t) = e^{-t}(c_1 \cos t + c_2 \sin t)$.

(b) (2 points) Use the method of undetermined coefficients to find one solution to the inhomogeneous equation $y'' + 2y' + 2y = \cos t$.

Solution: Our trial solution is $y_p(t) = A \cos t + B \sin t$. (Note that if $\cos t$ were a solution to the homogeneous equation, we would have to multiply this function by t, as otherwise $y_p'' + 2y_p' + 2y_p = 0$ regardless of A and B.) To solve for A and B, we plug everything in:

$$y_p(t) = A\cos t + B\sin t \tag{1}$$

$$y'_p(t) = -A\sin t + B\cos t \tag{2}$$

$$y_p''(t) = -A\cos t - B\sin t \tag{3}$$

$$y_p'' + 2y_p' + 2y_p = (-A + 2B + 2A)\cos t + (-B - 2A + 2B)\sin t \tag{4}$$

$$= (A + 2B)\cos t + (-2A + B)\sin t.$$
 (5)

So we must solve the system A + 2B = 1, -2A + B = 0. We could do this by row reducing, or we can simply observe that B = 2A, so A + 2(2A) = 5A = 1. This gives A = 1/5 and B = 2/5, so $y_p(t) = \frac{\cos t + 2\sin t}{5}$.

(c) (1 point) Find the general solution to the inhomogeneous equation $y'' + 2y' + 2y = \cos t$.

Solution: If T denotes the linear transformation T(y) = y'' + 2y' + 2y (from the vector space of real-valued functions to itself), then we found the kernel of T in part (a), and we now know one solution to $T(y) = b = \cos t$. The general solution is given by adding an arbitrary element of the kernel to this particular solution: $y = \frac{\cos t + 2\sin t}{5} + e^{-t}(c_1 \cos t + c_2 \sin t)$.