Name:

> | You have 20 minutes to complete the quiz. |
| :--- |

1. (5 points) Solve the differential equation $y^{\prime \prime}-y=0$ subject to the initial conditions $y(0)=5, y^{\prime}(0)=-1$.

Solution: The auxiliary polynomial is $r^{2}-1=(r-1)(r+1)$, so there are two distinct real roots, $r_{1}=1$ and $r_{2}=-1$. The general solution is $y(t)=c_{1} e^{t}+c_{2} e^{-t}$. Taking the derivative, we have $y^{\prime}(t)=c_{1} e^{t}-c_{2} e^{-t}$. Then setting $t=0$ gives $y(0)=c_{1}+c_{2}=5$ and $y^{\prime}(0)=c_{1}-c_{2}=-1$. This linear system has the solution $c_{1}=2, c_{2}=3$, so the solution to the differential equation is $y(t)=2 e^{t}+3 e^{-t}$.
2. (a) (2 points) Find the general solution to the homogeneous equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$. (Your final answer should only involve real-valued functions.)

Solution: The auxiliary equation is $r^{2}+2 r+2=0$, whose roots are $\frac{-2 \pm \sqrt{4-8}}{2}=-1 \pm i$. The complex solutions to the differential equation are spanned by $e^{(-1+i) t}$ and $e^{(-1-i) t}$, but we want our functions to be real-valued, so we use $e^{-t} \cos t$ and $e^{-t} \sin t$ instead. (Recall: $e^{(-1+i) t}=e^{-t} e^{i t}=e^{-t}(\cos t+i \sin t)$; we are using the real and imaginary parts of this function. We can similarly calculate $e^{(-1-i) t}=e^{-t}(\cos t-i \sin t)$.) Our general solution is $y(t)=e^{-t}\left(c_{1} \cos t+c_{2} \sin t\right)$.
(b) (2 points) Use the method of undetermined coefficients to find one solution to the inhomogeneous equation $y^{\prime \prime}+2 y^{\prime}+2 y=\cos t$.

Solution: Our trial solution is $y_{p}(t)=A \cos t+B \sin t$. (Note that if $\cos t$ were a solution to the homogeneous equation, we would have to multiply this function by t, as otherwise $y_{p}^{\prime \prime}+2 y_{p}^{\prime}+2 y_{p}=0$ regardless of A and B.) To solve for A and B, we plug everything in:

$$
\begin{align*}
y_{p}(t) & =A \cos t+B \sin t \tag{1}\\
y_{p}^{\prime}(t) & =-A \sin t+B \cos t \tag{2}\\
y_{p}^{\prime \prime}(t) & =-A \cos t-B \sin t \tag{3}\\
y_{p}^{\prime \prime}+2 y_{p}^{\prime}+2 y_{p} & =(-A+2 B+2 A) \cos t+(-B-2 A+2 B) \sin t \tag{4}\\
& =(A+2 B) \cos t+(-2 A+B) \sin t . \tag{5}
\end{align*}
$$

So we must solve the system $A+2 B=1,-2 A+B=0$. We could do this by row reducing, or we can simply observe that $B=2 A$, so $A+2(2 A)=5 A=1$. This gives $A=1 / 5$ and $B=2 / 5$, so $y_{p}(t)=\frac{\cos t+2 \sin t}{5}$.
(c) (1 point) Find the general solution to the inhomogeneous equation $y^{\prime \prime}+2 y^{\prime}+2 y=\cos t$.

Solution: If T denotes the linear transformation $T(y)=y^{\prime \prime}+2 y^{\prime}+2 y$ (from the vector space of real-valued functions to itself), then we found the kernel of T in part (a), and we now know one solution to $T(y)=b=\cos t$. The general solution is given by adding an arbitrary element of the kernel to this particular solution: $y=\frac{\cos t+2 \sin t}{5}+e^{-t}\left(c_{1} \cos t+c_{2} \sin t\right)$.

