1. Provide an example of the following, or explain why no such example can exist:
(a) Vectors $u, v \in \mathbb{R}^{2}$ with $u \cdot v=3$ such that $\{u, v\}$ is also a basis for \mathbb{R}^{2}.

Solution: Let $u=\left[\begin{array}{l}a \\ b\end{array}\right]$ and $v=\left[\begin{array}{l}c \\ d\end{array}\right]$. Then we seek:

$$
u \cdot v=a c+b d=3
$$

To ensure this is a basis, we also need:

$$
a d-b c \neq 0
$$

For example we can do $a=2, b=c=d=1$.
(b) Vectors $u, v \in \mathbb{R}^{3}$ with $\|u+v\|>\|u\|+\|v\|$.

Solution: This is impossible by the triangle inequality, which says $\|u+v\| \leq\|u\|+\|v\|$.
(c) Vectors $u, v, w \in \mathbb{R}^{3}$ such that $\{u, v, w\}$ is an orthogonal set.

Solution: Take $u=e_{1}, v=e_{2}, w=0$.

2 . Let A be an $n \times n$ matrix with real coefficients.
(a) Show that A is not invertible if and only if 0 is an eigenvalue of A.

Solution: 0 is an eigenvalue of $A \Leftrightarrow 0$ is a root of $\chi_{A} \Leftrightarrow \operatorname{det}(A-0 \cdot \mathrm{Id})=0 \Leftrightarrow \operatorname{det} A=0$.
(b) Given that A has only one eigenvalue over \mathbb{C} (with multiplicity n) and is diagonalisable show that A is diagonal.

Solution: Suppose that $P^{-1} A P=\lambda \cdot$ Id for λ the unique eigenvalue of A. Then $A=P(\lambda$. Id) $P^{-1}=\lambda \cdot$ Id.
(c) Conclude that

$$
B=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

is not diagonalisable.
Solution: $\operatorname{det}(A-z \mathrm{Id})=(1-z)^{3}$ so the only eigenvalue of B is 1 . However, B is not diagonal and so by (b) cannot be diagonalisable.
3. (10 points) Find a basis for the orthogonal complement of the image of the linear transformation T : $\mathbb{P}_{3} \rightarrow \mathbb{R}^{4}$ defined as following:

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}\right)=\left[\begin{array}{c}
a_{0}+a_{1}+2 a_{2}-a_{3} \\
2 a_{1}+4 a_{2}-2 a_{3} \\
-2 a_{0} \\
0
\end{array}\right]
$$

Solution: The matrix for T relative to the basis $\left\{1, t, t^{2}, t^{3}\right\}$ for \mathbb{P}_{3} and the standard basis for \mathbb{R}^{4} is

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & -1 \\
0 & 2 & 4 & -2 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So the image of T is the column space of the matrix above, say A. Note that the orthogonal complement is the null space of A^{T}. The RREF of A^{T} is

$$
\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This gives a basis

$$
\left\{\left[\begin{array}{r}
2 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

for $\operatorname{Nul}\left(A^{T}\right)=\operatorname{Col}(A)^{\perp}=\operatorname{Im}(T)^{\perp}$.
4. Given a matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. Recall that the trace of A, denoted as $\operatorname{tr}(A)$, is the sum of all the matrix entries on the diagonal of the matrix. Complete the following tasks:
(a) Write out the characteristic polynomial of matrix A in terms of $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.

Solution:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12} a_{21} \\
& =\left(a_{11} a_{22}-a_{12} a_{21}\right)-\lambda\left(a_{11}+a_{22}\right)+\lambda^{2} \\
& =\lambda^{2}-\lambda \operatorname{tr}(A)+\operatorname{det}(A)=0
\end{aligned}
$$

(b) In order for the matrix A to have all-real eigenvalues, what must be true about $\operatorname{Tr}(A)$ and $\operatorname{Det}(A)$? Justify your answer.

Solution: For there to be all-real eigenvalues, the characteristic equations, which is also a quadratic equation, must have real solution for the roots.

$$
\begin{gathered}
\lambda=\frac{\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)}}{2} \\
\operatorname{tr}(A)^{2}-4 \operatorname{det}(A) \geq 0 \\
\operatorname{det}(A) \leq\left(\frac{\operatorname{tr}(A)}{2}\right)^{2}
\end{gathered}
$$

5. Below all matrices are $n \times n$ matrices with real coefficients. Mark the following as true or false.
(a) A must have an even number of non-real eigenvalues.

Solution: True, either with or without multiplicity. It's easier to explain why the answer is yes without multiplicity: if $\lambda=a+b i$ is an eigenvalue with $b \neq 0$ and complex eigenvector $v \in \mathbb{C}^{n}$, then its complex conjugate $\bar{\lambda}=a-b i$ must also be an eigenvalue, with eigenvector \bar{v} (this means we take the complex conjugate of every entry of v). So the non-real eigenvalues come in conjugate pairs.
(b) If $v_{1}, v_{2} \in \mathbb{R}^{n}$ are eigenvectors of A with different eigenvalues $\lambda_{1} \neq \lambda_{2}$, then v_{1} and v_{2} are linearly independent.

Solution: True. If $c_{1} v_{1}+c_{2} v_{2}=0$, then applying A gives

$$
\begin{align*}
A\left(c_{1} v_{1}+c_{2} v_{2}\right) & =c_{1} A v_{1}+c_{2} A v_{2} \tag{1}\\
& =c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2} \tag{2}\\
& =0 \tag{3}
\end{align*}
$$

Subtracting $\lambda_{1}\left(c_{1} v_{1}+c_{2} v_{2}\right)=0$ gives $c_{2}\left(\lambda_{2}-\lambda_{1}\right) v_{2}=0$, and since $v_{2} \neq 0$ (being an eigenvector) and $\lambda_{1}-\lambda_{2} \neq 0$ (by assumption), we get $c_{2}=0$. This gives $c_{1} v_{1}=0$, and since $v_{1} \neq 0$ this gives $c_{1}=0$.
(c) If $v_{1}, v_{2} \in \mathbb{R}^{n}$ are eigenvectors of A with different eigenvalues $\lambda_{1} \neq \lambda_{2}$, then v_{1} and v_{2} are orthogonal.

Solution: False. For example, $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ has two eigenvalues 1,0 with eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ which are not orthogonal, although they are linearly independent. More generally, specifying a pair of linearly independent vectors v_{1}, v_{2} in \mathbb{R}^{2} and a pair of distinct eigenvalues $\lambda_{1} \neq \lambda_{2}$ for them uniquely specifies a matrix $A=P D P^{-1}$, where D is the diagonal matrix with entries λ_{1}, λ_{2} and P is the matrix whose columns are v_{1} and v_{2}. In this construction there's no reason for v_{1} and v_{2} to be orthogonal.
However, this is true if A is symmetric $\left(A=A^{T}\right)$.
(d) The dimension of $\operatorname{Nul}(A)$ is the multiplicity of 0 as an eigenvalue of A.

Solution: False. The dimension of $\operatorname{Nul}(A)$ is at most the multiplicity of 0 as an eigenvalue of A, but can be less than it. For example, the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has the property that $\operatorname{dim} \operatorname{Nul}(A)=1$, with basis $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, but it has characteristic polynomial λ^{2}, so the multiplicity of 0 as an eigenvalue is 2 .
However, this is true if A is diagonalizable.
(e) The eigenvalues of $A B$ are the product of the eigenvalues of A and B.

Solution: False. This statement should seem quite suspicious because the eigenvalues of a matrix don't come in any distinguished order, so there's no distinguished way to match up an
eigenvalue of A with an eigenvalue of B to multiply them and get an eigenvalue of $A B$. For an explicit counterexample, take

$$
A=\left[\begin{array}{ll}
0 & 1 \tag{4}\\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The eigenvalues of A and B are both just 0 , but $A B$ has eigenvalues both 0 and 1 .
However, this is true if A and B are simultaneously diagonalizable: that is, there is a single matrix P such that $A=P D_{A} P^{-1}$ and $B=P D_{B} P^{-1}$ where D_{A}, D_{B} are diagonal.
6. Let A be an $n \times n$ matrix with characteristic polynomial $-\lambda(\lambda-1)^{2}$. Explain whether or not the following can be true, and if it can, give an example:
(a) $\operatorname{Rank}(A)=0$
(b) $\operatorname{Rank}(A)=1$
(c) $\operatorname{Rank}(A)=2$
(d) $\operatorname{Rank}(A)=3$

Solution: The dimension of an eigenspace for an eigenvalue λ is always less than or equal to the multiplicity of λ in the characteristic polynomial. In this case, $\lambda=0$ has multiplicity 1 , so the $\lambda=0$ eigenspace has dimension less than or equal to 1 . However the $\lambda=0$ eigenspace has to be at least one dimensional because $\lambda=0$ is an eigenvalue, which means it has some nonzero eigenvector. So the $\lambda=0$ eigenspace is exactly 1 dimensional. Since the $\lambda=0$ eigenspace is the same as the null space, we see that $\operatorname{Rank}(A)=3-1=2$. Thus a), b) and d) are impossible.

To see that c) is possible, consider:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

7. Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be the linear transformation given by

$$
T(A)=A^{T}
$$

where A^{T} is the transpose of A.
(a) Is T an isomorphism? If so, describe T^{-1}.

Solution: Yes. $T^{-1}=T$ since $\left(A^{T}\right)^{T}=A$.
(b) Find the eigenvalues of T and the dimensions of the eigenspaces.

Solution: This can be done by writing a matrix of A, but it can actually be done directly. Suppose we have

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\lambda\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then, $a=\lambda a, c=\lambda b, b=\lambda c$, and $d=\lambda d$. If a or d is nonzero, these imply immediately that $\lambda=1$. Otherwise, either c or b is not zero, then either $c=\lambda b=\lambda^{2} c$ or $b=\lambda^{2} b$ implies that $\lambda= \pm 1$. Thus, the eigenvalues of T are 1 and -1 .
For $\lambda=1$, we have must have $c=b$ and no other conditions. Thus, the eigenspace for $\lambda=1$ is

$$
\left\{\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right): a, b, d \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\}
$$

and this eigenspace has dimension equal to 3 .
For $\lambda=-1$, we must have $a=0$ since $a=-a$ and similarly $d=0$. We also have $b=-c$. Thus, the eigenspace is

$$
\left\{\left(\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right): b \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\}
$$

and this eigenspace has dimension equal to 1 .
(c) Is there a basis for $M_{2 \times 2}$ such that the matrix of T is diagonal with respect to this basis?

Solution: Yes. The sum of the dimensions of the eigenspaces is

$$
3+1=4=\operatorname{dim} M_{2 \times 2}
$$

so there is a basis for which the matrix of T is diagonal with respect to that basis. Namely, combining the two bases listed in the solution of the previous part will give one such basis.

