1. Provide an example of the following, or explain why no such example can exist:
(a) Vectors $u, v \in \mathbb{R}^{2}$ with $u \cdot v=3$ such that $\{u, v\}$ is also a basis for \mathbb{R}^{2}.
(b) Vectors $u, v \in \mathbb{R}^{3}$ with $\|u+v\|>\|u\|+\|v\|$.
(c) Vectors $u, v, w \in \mathbb{R}^{3}$ such that $\{u, v, w\}$ is an orthogonal set.
2. Let A be an $n \times n$ matrix with real coefficients.
(a) Show that A is not invertible if and only if 0 is an eigenvalue of A.
(b) Given that A has only one eigenvalue over \mathbb{C} (with multiplicity n) and is diagonalisable show that A is diagonal.
(c) Conclude that

$$
B=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

is not diagonalisable.
3. (10 points) Find a basis for the orthogonal complement of the image of the linear transformation T : $\mathbb{P}_{3} \rightarrow \mathbb{R}^{4}$ defined as following:

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}\right)=\left[\begin{array}{c}
a_{0}+a_{1}+2 a_{2}-a_{3} \\
2 a_{1}+4 a_{2}-2 a_{3} \\
-2 a_{0} \\
0
\end{array}\right]
$$

4. Given a matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. Recall that the trace of A, denoted as $\operatorname{tr}(A)$, is the sum of all the matrix entries on the diagonal of the matrix. Complete the following tasks:
(a) Write out the characteristic polynomial of matrix A in terms of $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
(b) In order for the matrix A to have all-real eigenvalues, what must be true about $\operatorname{Tr}(A)$ and $\operatorname{Det}(A)$? Justify your answer.

Math 54

Practice Midterm 2 Questions
5. Below all matrices are $n \times n$ matrices with real coefficients. Mark the following as true or false.
(a) A must have an even number of non-real eigenvalues.
(b) If $v_{1}, v_{2} \in \mathbb{R}^{n}$ are eigenvectors of A with different eigenvalues $\lambda_{1} \neq \lambda_{2}$, then v_{1} and v_{2} are linearly independent.
(c) If $v_{1}, v_{2} \in \mathbb{R}^{n}$ are eigenvectors of A with different eigenvalues $\lambda_{1} \neq \lambda_{2}$, then v_{1} and v_{2} are orthogonal.
(d) The dimension of $\operatorname{Nul}(A)$ is the multiplicity of 0 as an eigenvalue of A.
(e) The eigenvalues of $A B$ are the product of the eigenvalues of A and B.
6. Let A be an $n \times n$ matrix with characteristic polynomial $-\lambda(\lambda-1)^{2}$. Explain whether or not the following can be true, and if it can, give an example:
(a) $\operatorname{Rank}(A)=0$
(b) $\operatorname{Rank}(A)=1$
(c) $\operatorname{Rank}(A)=2$
(d) $\operatorname{Rank}(A)=3$
7. Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be the linear transformation given by

$$
T(A)=A^{T}
$$

where A^{T} is the transpose of A.
(a) Is T an isomorphism? If so, describe T^{-1}.
(b) Find the eigenvalues of T and the dimensions of the eigenspaces.
(c) Is there a basis for $M_{2 \times 2}$ such that the matrix of T is diagonal with respect to this basis?

