1. For which values of a is the following matrix invertible?

$$
\left(\begin{array}{ccc}
a & 0 & 1 \\
-1 & a & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Solution: We compute the determinant and find when it is zero. Expanding across the top row gives:

$$
\left|\begin{array}{ccc}
a & 0 & 1 \\
-1 & a & 0 \\
0 & 1 & 1
\end{array}\right|=a \cdot(a \cdot 1-0 \cdot 1)+1 \cdot(-1 \cdot 1-a \cdot 0)=a^{2}-1
$$

So the matrix is invertible unless $a= \pm 1$.
2. Label the following statements as either true or false.
(a) $\operatorname{det} A^{T}=\operatorname{det} A$
(b) A matrix A is invertible if there is another matrix B such that $A B=I$.
(c) The dimension of a subspace of \mathbb{R}^{n} is at most n.
(d) If A and B are invertible $n \times n$ matrices, then $(A B)^{-1}=A^{-1} B^{-1}$.
(e) If A is a square matrix, then after adding 2 times the first row of A to the second row, the determinant is multiplied by 2 .
(f) Every subspace of \mathbb{R}^{n} contains at most n vectors.
(g) If a 3×5 matrix A represents a surjective linear transformation, then $\operatorname{Null}(A)$ must be exactly 2-dimensional.
(h) If A and B are $n \times n$ matrices and $A B$ is invertible, then $B A$ must be invertible too.

Solution: a) is true. For example, using row reduction you can express A as a product of elementary matrices, and then it suffces to verify that $\operatorname{det} E^{T}=\operatorname{det} E$ where E is an elementary matrix.
b) is false. Either we also need to require that $B A=I$, or we need to require that A and B are square. Otherwise, $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ gives a counterexample.
c) is true. The dimension of a subspace of \mathbb{R}^{n} can be computed as the number of pivots in any matrix whose columns span that subspace, and because such a matrix has n rows, it can have at most n pivots.
d) is false. The correct rule is that $(A B)^{-1}=B^{-1} A^{-1}$, because $A B B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1}=$ $A A^{-1}=I$ and similarly for multiplication on the other side. Most pairs of invertible $n \times n$ matrices will give a counterexample, such as $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
e) is false. The determinant is unchanged. It would be multiplied by 2 if we just multiplied a row by 2 .
f) is false: \mathbb{R}^{n} itself is a subspace of \mathbb{R}^{n}, and contains infinitely many vectors (if $n>0$).
g) is true. If the linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ is surjective, then its rank is 3 , so the null space has dimension $5-3=2$ by the rank theorem.
h) is true. A matrix is invertible if and only if its determinant is nonzero. But since $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B A)$, if $A B$ has nonzero determinant, so does $B A$.
3. A linear transformation, $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, has the following effect:
$T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
(a) What is the standard matrix of the transformation?
(b) Is the transformation one-to-one? Is it onto?
(c) Find a basis for the column and null spaces.

Solution:

(a) Standard matrix $\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & -1 & 1 \\ 2 & 1 & 0\end{array}\right]$
(b) Row-reduce $\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & -1 & 1 \\ 2 & 1 & 0\end{array}\right]\left[R_{3}-2 R_{1}\right] R_{2}+R_{1}\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 1 & -2\end{array}\right]\left[R_{3}+R_{2}\right] R_{2} \div-1\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right]$

This is neither one-to-one nor onto.
(c) The basis for the column space $\left\{\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$ is formed by the linearly independent columns of A. Rank=2
Basis for the null space found by solving $A \mathbf{x}=\mathbf{0} . x_{3}$ is the free variable. Basis: $\left\{\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]\right\}$. $\operatorname{Dim}(\operatorname{Nul}(A))=1$
4. (a) Let A be a $n \times n$ matrix. Relate $\operatorname{det}(-A)$ to $\operatorname{det}(A)$. (Be careful)

Solution: We can pull out a scalar row by row, and since there are n rows we get $\operatorname{det}(-A)=$ $(-1)^{n} \operatorname{det}(A)$
(b) Suppose A, B are $n \times n$ matrices. If $A B$ is invertible show A and B must both be invertible.

Solution: $\operatorname{det}(A B) \neq 0$ and $\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A B)$ so $\operatorname{det}(A), \operatorname{det}(B) \neq 0$. Thus A, B are invertible.
(c) Suppose $A^{k}=0$. Show that A cannot be invertible.

Solution: $\operatorname{det}\left(A^{k}\right)=\operatorname{det}(A)^{k}=0$ so $\operatorname{det}(A)=0$. Thus A cannot be invertible.
5. Let $\mathcal{B}=\left\{1, t-1,(t-1)^{2}\right\}$ be a subset of \mathbb{P}_{2}.
(a) Show that \mathcal{B} is a basis for \mathbb{P}^{2}.

Solution: Under the usual isomorphism $\mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$, this amounts to show that the following determinant is non-zero:

$$
\left|\begin{array}{rrr}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right|
$$

This is true because the determinant is 1 .
(b) Find the \mathcal{B}-coordinate of $1+2 t+3 t^{2}$.

Solution: By the Taylor expansion,

$$
1+2 t+3 t^{2}=6+8(t-1)+3(t-1)^{2}
$$

Therefore, the \mathcal{B}-coordinate is $(6,8,3)$.
6. Let S be the tetrahedron in \mathbb{R}^{3} with vertices at $(1,1,1),(2,3,4),(3,4,5)$, and $(4,5,7)$. Find its volume.

Solution: After translating $(1,1,1)$ to the origin, the other vertices are $(1,2,3),(2,3,4)$, and $(3,4,6)$. The volume of the parallelepiped with these vertices is the absolute value of the following determinant

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 6
\end{array}\right|=-1
$$

Therefore, the volume of S is $\frac{1}{6}$.
7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by rotating points $\frac{\pi}{4}$ radians counterclockwise around the origin, then reflecting them across the y axis. What is the standard matrix of T ?

Solution: The columns of the standard matrix of a linear transformation T are given by applying T to the standard basis vectors $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \cdot e_{1}$ transforms as follows:

$$
\left[\begin{array}{l}
1 \tag{1}\\
0
\end{array}\right] \xrightarrow{\text { rotate }}\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right] \xrightarrow{\text { reflect }}\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]
$$

e_{2} transforms as follows:

$$
\left[\begin{array}{l}
0 \tag{2}\\
1
\end{array}\right] \xrightarrow{\text { rotate }}\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right] \xrightarrow{\text { reflect }}\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]
$$

Hence the standard matrix of T is $\left[\begin{array}{cc}-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]$.
8. $\mathbb{R}[x]$ is the set of polynomials with real coefficients. It is a (real) vector space with the usual addition and scalar multiplication you know and love from high school. Differentiation, $\frac{\mathrm{d}}{\mathrm{d} x}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ is a linear operator.
(a) What is $\operatorname{Ker}\left(\frac{\mathrm{d}}{\mathrm{d} x}\right)$?

Solution:

$$
\operatorname{Ker}\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)=\{\alpha \in \mathbb{R}\}
$$

that is, the constant polynomials, since the derivative of a polynomial is zero if and only if the polynomial is constant.
(b) What is $\operatorname{Im}\left(\frac{d}{d x}\right)$?

Solution:

$$
\operatorname{Im}\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)=\mathbb{R}[x]
$$

This is true because every polynomial is the derivative of its indefinite integral (where you choose any value for C. For example, $2 x$ is in the image because it is the derivative of x^{2}, which is the indefinite integral of $2 x$ with $C=0$.
(c) Is $\frac{\mathrm{d}}{\mathrm{d} x}$ injective? Is $\frac{\mathrm{d}}{\mathrm{d} x}$ surjective?

Solution: It is not injective as it has nonzero kernel. It is surjective because the image is all of $\mathbb{R}[x]$.
(d) Is $\operatorname{dim}(\mathbb{R}[x])$ finite? If so, what is it? If not, prove that it is not.

Solution: It is not finite because we have exhibited a linear operator on $\mathbb{R}[x]$ which is surjective but not injective.

