1. For which values of a is the following matrix invertible?

$$
\left(\begin{array}{ccc}
a & 0 & 1 \\
-1 & a & 0 \\
0 & 1 & 1
\end{array}\right)
$$

2. Label the following statements as either true or false.
(a) $\operatorname{det} A^{T}=\operatorname{det} A$
(b) A matrix A is invertible if there is another matrix B such that $A B=I$.
(c) The dimension of a subspace of \mathbb{R}^{n} is at most n.
(d) If A and B are invertible $n \times n$ matrices, then $(A B)^{-1}=A^{-1} B^{-1}$.
(e) If A is a square matrix, then after adding 2 times the first row of A to the second row, the determinant is multiplied by 2 .
(f) Every subspace of \mathbb{R}^{n} contains at most n vectors.
(g) If a 3×5 matrix A represents a surjective linear transformation, then $\operatorname{Null}(A)$ must be exactly 2-dimensional.
(h) If A and B are $n \times n$ matrices and $A B$ is invertible, then $B A$ must be invertible too.
3. A linear transformation, $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, has the following effect:
$T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
(a) What is the standard matrix of the transformation?
(b) Is the transformation one-to-one? Is it onto?
(c) Find a basis for the column and null spaces.
4. (a) Let A be a $n \times n$ matrix. Relate $\operatorname{det}(-A)$ to $\operatorname{det}(A)$.
(b) Suppose A, B are $n \times n$ matrices. If $A B$ is invertible show A and B must both be invertible.
(c) Suppose $A^{k}=0$. Show that A cannot be invertible.
5. Let $\mathcal{B}=\left\{1, t-1,(t-1)^{2}\right\}$ be a subset of \mathbb{P}_{2}.
(a) Show that \mathcal{B} is a basis for \mathbb{P}^{2}.
(b) Find the \mathcal{B}-coordinate of $1+2 t+3 t^{2}$.

6 . Let S be the tetrahedron in \mathbb{R}^{3} with vertices at $(1,1,1),(2,3,4),(3,4,5)$, and $(4,5,7)$. Find its volume.
7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by rotating points $\frac{\pi}{4}$ radians counterclockwise around the origin, then reflecting them across the y axis. What is the standard matrix of T ?
8. $\mathbb{R}[x]$ is the set of polynomials with real coefficients. It is a (real) vector space with the usual addition and scalar multiplication you know and love from high school. Differentiation, $\frac{\mathrm{d}}{\mathrm{d} x}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ is a linear operator.
(a) What is $\operatorname{Ker}\left(\frac{\mathrm{d}}{\mathrm{d} x}\right)$?
(b) What is $\operatorname{Im}\left(\frac{d}{d x}\right)$?
(c) Is $\frac{\mathrm{d}}{\mathrm{d} x}$ injective? Is $\frac{\mathrm{d}}{\mathrm{d} x}$ surjective?
(d) Is $\operatorname{dim}(\mathbb{R}[x])$ finite? If so, what is it? If not, prove that it is not.

