1. (10 points) Write the definition of each of the following concepts. Use complete sentences and be as precise as you can.
(a) (2 points) The inverse of a matrix.

Solution: The inverse of an $n \times n$ matrix A is an $n \times n$ matrix B so that $A B=B A=I$, where I is the $n \times n$ identity matrix.
(b) (2 points) The set of vectors $\left\{v_{1}, \ldots v_{k}\right\}$ in a vector space V being linearly independent.

Solution: This set of vectors is linearly independent if whenever:

$$
c_{1} v_{1}+\ldots c_{k} v_{k}=0
$$

for some scalars $c_{1}, \ldots c_{k}$, then we must have $c_{1}=\ldots c_{k}=0$.
(c) (2 points) The dimension of a (finite-dimensional) vector space. (State the theorems which make this definition meaningful.)

Solution: The dimension of a vector space is the size of any basis of the vector space. This is a meaningful definition because 1) every vector space has a basis, and 2) and two bases have the same size.
(d) (2 points) The projection of a vector v in \mathbb{R}^{n} onto a subspace W.

Solution: It is the unique vector w in W such that $v-w \in W^{\perp}$. Equivalently, it is the vector w minimizing $\|v-w\|$.
(e) (2 points) A diagonalizable matrix.

Solution: A diagonalizable matrix is an $n \times n$ matrix such that there exists another $n \times n$ invertible matrix P such that $A=P D P^{-1}$, where D is a diagonal matrix.

Math 54

Sample Final
2. (10 points) Find the equation $y=\alpha+\beta x$ of the least-squares line that best fits the data

$$
\left(a_{1}, b_{1}\right)=(0,1),\left(a_{2}, b_{2}\right)=(1,1),\left(a_{3}, b_{3}\right)=(1,2)
$$

That is, the equation minimizing $\sum_{n=1}^{n=3}\left|b_{i}-\left(\alpha+\beta a_{i}\right)\right|^{2}$.

Solution: This can be rewritten as the usual least square problem $A x=b$ where

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Since the columns are linearly independent, there is a unique solution for $A^{T} A x=A^{T} b$ which is

$$
\left[\begin{array}{c}
1 \\
1 / 2
\end{array}\right]
$$

3. (10 points) A matrix is called nilpotent if $A^{n}=0$ for some $n>0$.
(a) (2 points) Write down an example of a nonzero nilpotent matrix.

Solution: The classic example is

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

(b) (4 points) Show that the only eigenvalue of a nilpotent matrix is zero.

Solution: Suppose $A^{n}=0$. Then $A v=\lambda v \Rightarrow 0=A^{n} v=\lambda^{n} v \Rightarrow \lambda^{n}=0 \Rightarrow \lambda=0$.
(c) (2 points) If A is an $n \times n$ nilpotent matrix, what is the characteristic polynomial of A ?

Solution: $\chi_{A}(z)=(-z)^{n}$, since the only eigenvalues are 0 , so the only root can be 0 . Also it has degree n, and therefore it must be $c \cdot z^{n}$. Since the leading term is always $(-1)^{n}$, we arrive at the answer.
(d) (2 points) Is $B=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$ a nilpotent matrix?

Solution: One can calculate that 5 is an eigenvalue of B and so B is not nilpotent. Alternatively, any positive power of A has only positive entries, and therefore can never be the zero matrix.
4. (10 points) Consider the following five functions.

1. $\operatorname{det}: M_{2 \times 2} \rightarrow \mathbb{R}$ given by taking a matrix A to its $\operatorname{determinant} \operatorname{det}(A)$.
2. $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ given by $T(A)=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] A$.
3. $e: M_{2 \times 2} \rightarrow M_{2 \times 2}$ given by $e(A)=e^{A}$.
4. $S: \mathbb{R}^{7} \rightarrow \mathbb{R}$ given by $S(v)=v \cdot w$ where $w \in \mathbb{R}^{7}$ is a fixed nonzero vector.
5. $\Delta: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $\Delta(y(x))=y^{\prime \prime}(x)$.

Here, $M_{2 \times 2}$ is the space of 2×2 real matrices, $C^{\infty}(\mathbb{R})$ is the space of infinitely differentiable functions from \mathbb{R} to \mathbb{R}, and e^{A} is the matrix exponential.
(a) (3 points) Which of these maps are linear transformations?

Solution: 2, 4, 5 are all easily seen to be linear. 1 is not linear as $\operatorname{det}(c A)=c^{2} \operatorname{det}(A) \neq$ $c \operatorname{det}(A)$ in general and 2 is not linear as $e^{c A}=e^{c} e^{A} \neq c e^{A}$ in general.
(b) (3 points) Of the maps that are linear, which are injective?

Solution: Only 2. 2 is injective since it is an isomorphism (see solution to part d). S cannot be injective since $7>1$ and $\operatorname{Ker} \Delta=\{f(x)=A x+B\}$ is 2-dimensional.
(c) (3 points) Of the maps that are linear, which are surjective?

Solution: 2, 4, 5 are all surjective. 2 is injective since it is an isomorphism (see solution to part d). 4 is surjective since for any $c \in \mathbb{R}$, we have that $S\left(\frac{c}{w \cdot w} w\right)=c .5$ is surjective since given any $y \in C^{\infty}(\mathbb{R})$, we have that $\Delta\left(\int_{0}^{x}\left(\int_{0}^{t} y(s) d s\right) d t\right)=y(x)$.
(d) (1 point) Of the maps that are linear, which are isomorphisms?

Solution: Only 2. The other two are not injective so not isomorphisms. The inverse of 2 is given by $A \mapsto\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$.
5. (10 points) Solve the following second order linear differential equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=10 t \sin (t)-4 \cos (t)
$$

subject to the initial conditions:

$$
y(0)=12, \quad y^{\prime}(0)=15
$$

Solution: First solve for the homogeneous equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

Auxiliary Equation:

$$
\begin{aligned}
r^{2}-3 r+2=0 \Rightarrow & (r-2)(r-1)=0 \Rightarrow r_{1}=1, r_{2}=2 \\
& y_{h}=c_{1} e^{t}+c_{2} e^{2 t}
\end{aligned}
$$

Guess the form of the particular solution: $y_{p}=(a t+b) \sin (t)+(c t+d) \cos (t)$

$$
\begin{gathered}
y_{p}^{\prime}=a \sin t+(a t+b) \cos t+c \cos t-(c t+d) \sin t \\
y_{p}^{\prime \prime}=2 a \cos t-(a t+b) \sin t-2 c \sin t-(c t+d) \cos t
\end{gathered}
$$

$$
y_{p}^{\prime \prime}-3 y_{p}^{\prime}+2 y_{p}=(a+3 c) t \sin t+(c-3 a) t \cos t+(b+3 d-3 a-2 c) \sin t+(-3 b+d+2 a-3 c) \cos t
$$

By matching the coefficient of corresponding terms:

$$
\left\{\begin{array}{l}
a+3 c=10 \\
-3 a+c=0 \\
-3 a+b-2 c+3 d=0 \\
2 a-3 b-3 c+d=-4
\end{array}\right.
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
-3 & 0 & 1 & 0 \\
-3 & 1 & 2 & 3 \\
2 & -3 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
10 \\
0 \\
0 \\
-4
\end{array}\right] \Rightarrow\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
3 \\
3
\end{array}\right]} \\
\Rightarrow y_{p}=t \sin t+(3 t+3) \cos t \\
y=y_{h}+y_{p}=c_{1} e^{t}+c_{2} e^{2 t}+t \sin t+(3 t+3) \cos t \\
y^{\prime}=c_{1} e^{t}+2 c_{2} e^{2 t}+\sin t+t \cos t+3 \cos t-(3 t+3) \sin t
\end{gathered}
$$

Using Initial Condition at $t=0$

$$
\begin{gathered}
y(0)=c_{1}+c_{2}+3=12 \\
y(0)^{\prime}=c_{1}+2 c_{2}+3=15 \\
\Rightarrow c_{1}=6 ; c_{2}=3
\end{gathered}
$$

Final Solution:

$$
y=6 e^{t}+3 e^{2 t}+t \sin t+(3 t+3) \cos t
$$

6. (10 points) Give the general solution to the following differential equation system:

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \mathbf{y}(t)
$$

We present three solutions because we are very kind.

Solution: .Denote the coefficient matrix as A. Then the general solution must be $\mathbf{y}=e^{A t} C$ for a constant vector C. The only problem remains is: what is $e^{A t}$?
By definition,

$$
e^{A t}=\sum_{n=0}^{+\infty} \frac{A^{n} t^{n}}{n!}
$$

so we should first calculate A^{n}. For small numbers of n, we have the following result:

$$
A^{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], A^{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], A^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], A^{3}=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

Thus we may guess that

$$
A^{n}=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right]
$$

and this pattern indeed holds, as the following computation shows more explicitly:

$$
A^{n+1}=A^{n} \times A=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & n+1 \\
0 & 1
\end{array}\right]
$$

Using this result, now we have

$$
\begin{aligned}
\sum_{n=0}^{+\infty} \frac{A^{n} t^{n}}{n!} & =\sum_{n=0}^{+\infty} \frac{1}{n!}\left[\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right] t^{n} \\
& =\sum_{n=0}^{+\infty} \frac{1}{n!}\left[\begin{array}{cc}
t^{n} & n t^{n} \\
0 & t^{n}
\end{array}\right] \\
& =\sum_{n=0}^{+\infty}\left[\begin{array}{cc}
t^{n} / n! & n t^{n} / n! \\
0 & t^{n} / n!
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sum_{n=0}^{+\infty} t^{n} / n! & \sum_{n=0}^{+\infty} n t^{n} / n! \\
0 & \sum_{n=0}^{+\infty} t^{n} / n!
\end{array}\right]
\end{aligned}
$$

Now $\sum_{n=0}^{+\infty} \frac{t^{n}}{n!}=e^{t}$ by definition, and

$$
\begin{aligned}
\sum_{n=0}^{+\infty} \frac{n t^{n}}{n!} & =\sum_{n=1}^{+\infty} \frac{n t^{n}}{n!} \\
& =\sum_{n=1}^{+\infty} \frac{t^{n}}{(n-1)!} \\
& =t \sum_{n=1}^{+\infty} \frac{t^{n-1}}{(n-1)!} \\
& =t \sum_{n=0}^{+\infty} \frac{t^{n}}{n!} \\
& =t e^{t}
\end{aligned}
$$

Put the result back into the matrix, the solution is

$$
e^{A t} C=\left[\begin{array}{cc}
e^{t} & t e^{t} \\
0 & e^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{t}+c_{2} t e^{t} \\
c_{2} e^{t}
\end{array}\right]
$$

Solution: An alternative approach that uses matrix exponentials, but avoids messy computations is as follows. First, notice that:

$$
\left[\begin{array}{cc}
t & t \\
0 & t
\end{array}\right]=\left[\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right]+\left[\begin{array}{ll}
0 & t \\
0 & 0
\end{array}\right]
$$

where

$$
\left[\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right]\left[\begin{array}{ll}
0 & t \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & t \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right]
$$

Call these matrices D and N respectively. Since they commute, we have $e^{D+N}=e^{D} e^{N}$. Since:

$$
e^{D}=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{t}
\end{array}\right]
$$

and

$$
e^{N}=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

we get:

$$
e^{A}=\left[\begin{array}{cc}
e^{t} & t e^{t} \\
0 & e^{t}
\end{array}\right]
$$

Now we proceed as in the end of the first solution.

Solution: An alternative solution that avoids matrix exponentials is as follows. Notice that our system is:

$$
\begin{aligned}
x^{\prime} & =x+y \\
y^{\prime} & =y
\end{aligned}
$$

Solving the second tells us $y=c_{1} e^{t}$. Substituting into the top gives:

$$
x^{\prime}-x=c_{1} e^{t}
$$

Solving this gives $x=c_{2} t e^{t}+c_{1} e^{t}$, as we got in the solution above.

Math 54

Sample Final
7. (10 points)
(a) (6 points) Compute the Fourier series for the extension of

$$
f(x)= \begin{cases}0 & -\pi<x<0 \\ 1 & 0 \leq x \leq \pi\end{cases}
$$

as a 2π periodic function.
Solution: We compute for $n>0$

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} 1 d x=1 \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (n x) d x=0 \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{0}^{\pi} \sin (n x) d x=\frac{1+(-1)^{n+1}}{n \pi}
\end{gathered}
$$

from which we see for $k>0$ that

$$
b_{2 k}=0
$$

and

$$
b_{2 k-1}=\frac{2}{(2 k-1) \pi} .
$$

Thus, the Fourier series for $f(x)$ is

$$
F(x)=\frac{1}{2}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) x)}{(2 k-1)}
$$

(b) (4 points) Use part (a) to find the sum of the convergent series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2 k-1} .
$$

Solution: By the convergence theorem for Fourier series we have

$$
1=F\left(\frac{\pi}{2}\right)=\frac{1}{2}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k-1)}
$$

so

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k-1)}=-\frac{\pi}{4}
$$

8. This problem concerns solutions to the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

with periodic boundary conditions $u(-L, t)=u(L, t), \frac{\partial u}{\partial x}(-L, t)=\frac{\partial u}{\partial x}(L, t)$.
(a) (6 points) Using separation of variables $u(x, t)=X(x) T(t)$ as usual, we end up having to solve

$$
\begin{equation*}
X^{\prime \prime}(x)+\lambda X(x)=0 \tag{2}
\end{equation*}
$$

with periodic boundary conditions $X(-L)=X(L), X^{\prime}(-L)=X^{\prime}(L)$. For which $\lambda \geq 0$ does this boundary value problem have a nonzero solution, and what are those nonzero solutions?

Solution: When $\lambda>0$, the general solution in this case is $X(x)=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$. The boundary conditions give

$$
\begin{align*}
c_{1} \cos \sqrt{\lambda} L-c_{2} \sin \sqrt{\lambda} L & =c_{1} \cos \sqrt{\lambda} L+c_{2} \sin \sqrt{\lambda} L \tag{3}\\
c_{1} \sin \sqrt{\lambda} L+c_{2} \cos \sqrt{\lambda} L & =-c_{1} \sin \sqrt{\lambda} L+c_{2} \cos \sqrt{\lambda} L \tag{4}
\end{align*}
$$

which gives $c_{2} \sin \sqrt{\lambda} L=c_{1} \sin \sqrt{\lambda} L=0$. So nonzero solutions are possible iff $\sin \sqrt{\lambda} L=0$, which is possible iff $\sqrt{\lambda}=\frac{\pi n}{L}$ (for n a positive integer), so $\lambda=\frac{\pi^{2} n^{2}}{L^{2}}$. In this case the space of solutions is 2-dimensional, spanned by

$$
\begin{equation*}
\cos \frac{\pi n x}{L}, \sin \frac{\pi n x}{L} \tag{5}
\end{equation*}
$$

When $\lambda=0$ the general solution is $X(x)=c_{1}+c_{2} x$. The boundary conditions give $c_{1}-c_{2} L=$ $c_{1}+c_{2} L$ and $c_{2}=c_{2}$, so in this case the space of solutions is 1-dimensional, spanned by the constant function 1 .
(b) (4 points) What are the corresponding nonzero solutions to the heat equation?

Solution: The t part $T(t)$ of the corresponding solutions to the heat equation satisfy $T^{\prime}(t)+$ $\beta \lambda T(t)=0$, so $T(t)$ is a scalar multiple of $e^{-\beta \lambda t}$. This gives solutions

$$
\begin{equation*}
e^{-\beta \frac{\pi^{2} n^{2} t}{L^{2}}} \cos \frac{\pi n x}{L}, e^{-\beta \frac{\pi^{2} n^{2} t}{L^{2}}} \sin \frac{\pi n x}{L} \tag{6}
\end{equation*}
$$

when $\lambda>0$, and the constant solution 1 when $\lambda=0$.

Sample Final

9. (10 points) The Laplace equation is an important class of Partial Differential Equations that are very prevalent in many physical problems (E\&M, Fluid, Mechanics etc.) In this problem, we will examine the form of solutions to the Laplace Equation. The Laplace equation is given as

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

(a) (4 points) First, suppose we can write the function $u(x, y)$ as $u(x, y)=X(x) Y(y)$. Based on this assumption, produce two separate ordinary differential equations for the functions X and Y. (Hint: an unknown constant k should be involved somewhere in your ODEs.)

Solution: Using separation of variables:

$$
u(x, y)=X(x) Y(y)
$$

Plug this form of solution back to the Laplace Equation given:

$$
\begin{gathered}
X^{\prime \prime}(x) Y(y)=-X(x) Y^{\prime \prime}(y) \\
\frac{X^{\prime \prime}}{-X}=\frac{Y^{\prime \prime}}{Y}=k, k \text { is some constant } \\
\Rightarrow\left\{\begin{array}{l}
X^{\prime \prime}(x)+k X(x)=0 \\
Y^{\prime \prime}(y)-k Y(y)=0
\end{array}\right.
\end{gathered}
$$

(b) (6 points) Discuss the different situations when k takes different values. Write out the general solutions for $X(x)$ and $Y(y)$. Based on the form of the solutions of X and Y, Is it possible for a nontrivial solution $u(x, y)$ to be periodic with respect to both the x and y variables?

Solution: In any case of k, the auxilary equation of X equation has the form:

$$
r^{2}+k=0 \Rightarrow r= \pm \sqrt{-k}
$$

The auxilary equation of Y equation has the form:

$$
r^{2}-k=0 \Rightarrow r= \pm \sqrt{k}
$$

1. If $k=0$

$$
\begin{aligned}
& X(x)=a_{1}+a_{2} x \\
& Y(y)=b_{1}+b_{2} y
\end{aligned}
$$

2. If $k<0,-k>0$

$$
\begin{gathered}
X(x)=a_{1} e^{\sqrt{-k} x}+a_{2} e^{-\sqrt{-k} x} \\
Y(y)=b_{1} \cos (\sqrt{-k} y)+b_{2} \sin (\sqrt{-k} y)
\end{gathered}
$$

3. If $k>0,-k<0$

$$
\begin{gathered}
X(x)=a_{1} \cos (\sqrt{-k} x)+a_{2} \sin (\sqrt{-k} x) \\
Y(y)=b_{1} e^{\sqrt{-k} y}+b_{2} e^{-\sqrt{-k} y}
\end{gathered}
$$

Hence it is not possible for the solution to be periodic with respect to both variables. If $k=0$, then $u(x, y)$ is linear in x and y and if it is nonzero it is not periodic in either direction. If $k>0$, then it is periodic in the x-direction, but not the y-direction (as long as it isn't the trivial solution, which is certainly periodic). The opposite is true when $k<0$.

