
Math 54 Sample Final Questions

1. (10 points) Write the definition of each of the following concepts. Use complete sentences and be as
precise as you can.

(a) (2 points) The inverse of a matrix.

Solution: The inverse of an n × n matrix A is an n × n matrix B so that AB = BA = I,
where I is the n× n identity matrix.

(b) (2 points) The set of vectors {v1, . . . vk} in a vector space V being linearly independent.

Solution: This set of vectors is linearly independent if whenever:

c1v1 + . . . ckvk = 0

for some scalars c1, . . . ck, then we must have c1 = . . . ck = 0.

(c) (2 points) The dimension of a (finite-dimensional) vector space. (State the theorems which make
this definition meaningful.)

Solution: The dimension of a vector space is the size of any basis of the vector space. This is
a meaningful definition because 1) every vector space has a basis, and 2) and two bases have
the same size.

(d) (2 points) The projection of a vector v in Rn onto a subspace W .

Solution: It is the unique vector w in W such that v−w ∈W⊥. Equivalently, it is the vector
w minimizing ||v − w||.

(e) (2 points) A diagonalizable matrix.

Solution: A diagonalizable matrix is an n × n matrix such that there exists another n × n
invertible matrix P such that A = PDP−1, where D is a diagonal matrix.
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2. (10 points) Find the equation y = α+ βx of the least-squares line that best fits the data

(a1, b1) = (0, 1), (a2, b2) = (1, 1), (a3, b3) = (1, 2)

That is, the equation minimizing
∑n=3
n=1 |bi − (α+ βai)|2.

Solution: This can be rewritten as the usual least square problem Ax = b where

A =

 1 0
1 1
1 1

 , b =

 1
1
2


Since the columns are linearly independent, there is a unique solution for ATAx = AT b which is[

1
1/2

]

Page 2



Math 54 Sample Final

3. (10 points) A matrix is called nilpotent if An = 0 for some n > 0.

(a) (2 points) Write down an example of a nonzero nilpotent matrix.

Solution: The classic example is (
0 1
0 0

)
.

(b) (4 points) Show that the only eigenvalue of a nilpotent matrix is zero.

Solution: Suppose An = 0. Then Av = λv ⇒ 0 = Anv = λnv ⇒ λn = 0⇒ λ = 0.

(c) (2 points) If A is an n× n nilpotent matrix, what is the characteristic polynomial of A?

Solution: χA(z) = (−z)n, since the only eigenvalues are 0, so the only root can be 0. Also it
has degree n, and therefore it must be c · zn. Since the leading term is always (−1)n, we arrive
at the answer.

(d) (2 points) Is B =

(
1 2
2 4

)
a nilpotent matrix?

Solution: One can calculate that 5 is an eigenvalue of B and so B is not nilpotent. Alterna-
tively, any positive power of A has only positive entries, and therefore can never be the zero
matrix.
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4. (10 points) Consider the following five functions.

1. det : M2×2 → R given by taking a matrix A to its determinant det(A).

2. T : M2×2 →M2×2 given by T (A) =

[
1 1
0 1

]
A.

3. e : M2×2 →M2×2 given by e(A) = eA.

4. S : R7 → R given by S(v) = v · w where w ∈ R7 is a fixed nonzero vector.

5. ∆ : C∞(R)→ C∞(R) given by ∆(y(x)) = y′′(x).

Here, M2×2 is the space of 2× 2 real matrices, C∞(R) is the space of infinitely differentiable functions
from R to R, and eA is the matrix exponential.

(a) (3 points) Which of these maps are linear transformations?

Solution: 2, 4, 5 are all easily seen to be linear. 1 is not linear as det(cA) = c2 det(A) 6=
cdet(A) in general and 2 is not linear as ecA = eceA 6= ceA in general.

(b) (3 points) Of the maps that are linear, which are injective?

Solution: Only 2. 2 is injective since it is an isomorphism (see solution to part d). S cannot
be injective since 7 > 1 and Ker ∆ = {f(x) = Ax+B} is 2-dimensional.

(c) (3 points) Of the maps that are linear, which are surjective?

Solution: 2, 4, 5 are all surjective. 2 is injective since it is an isomorphism (see solution to
part d). 4 is surjective since for any c ∈ R, we have that S

(
c

w·ww
)

= c. 5 is surjective since

given any y ∈ C∞(R), we have that ∆
(∫ x

0

(∫ t
0
y(s) ds

)
dt
)

= y(x).

(d) (1 point) Of the maps that are linear, which are isomorphisms?

Solution: Only 2. The other two are not injective so not isomorphisms. The inverse of 2 is

given by A 7→
[
1 −1
0 1

]
A.
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5. (10 points) Solve the following second order linear differential equation:

y′′ − 3y′ + 2y = 10tsin(t)− 4cos(t)

subject to the initial conditions:
y(0) = 12, y′(0) = 15

Solution: First solve for the homogeneous equation:

y′′ − 3y′ + 2y = 0

Auxiliary Equation:

r2 − 3r + 2 = 0⇒ (r − 2)(r − 1) = 0⇒ r1 = 1, r2 = 2

yh = c1e
t + c2e

2t

Guess the form of the particular solution: yp = (at+ b)sin(t) + (ct+ d)cos(t)

y′p = asint+ (at+ b)cost+ ccost− (ct+ d)sint

y′′p = 2acost− (at+ b)sint− 2csint− (ct+ d)cost

y′′p − 3y′p + 2yp = (a+ 3c)tsint+ (c− 3a)tcost+ (b+ 3d− 3a− 2c)sint+ (−3b+ d+ 2a− 3c)cost

By matching the coefficient of corresponding terms:
a+ 3c = 10

−3a+ c = 0

−3a+ b− 2c+ 3d = 0

2a− 3b− 3c+ d = −4
1 0 3 0
−3 0 1 0
−3 1 2 3
2 −3 −3 1



a
b
c
d

 =


10
0
0
−4

⇒

a
b
c
d

 =


1
0
3
3


⇒ yp = tsint+ (3t+ 3)cost

y = yh + yp = c1e
t + c2e

2t + tsint+ (3t+ 3)cost

y′ = c1e
t + 2c2e

2t + sint+ tcost+ 3cost− (3t+ 3)sint

Using Initial Condition at t = 0

y(0) = c1 + c2 + 3 = 12

y(0)′ = c1 + 2c2 + 3 = 15

⇒ c1 = 6; c2 = 3

Final Solution:

y = 6et + 3e2t + tsint+ (3t+ 3)cost
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6. (10 points) Give the general solution to the following differential equation system:

y′(t) =

[
1 1
0 1

]
y(t)

We present three solutions because we are very kind.

Solution: .Denote the coefficient matrix as A. Then the general solution must be y = eAtC for a
constant vector C. The only problem remains is: what is eAt?

By definition,

eAt =

+∞∑
n=0

Antn

n!

so we should first calculate An. For small numbers of n, we have the following result:

A0 =

[
1 0
0 1

]
, A1 =

[
1 1
0 1

]
, A2 =

[
1 2
0 1

]
, A3 =

[
1 3
0 1

]
Thus we may guess that

An =

[
1 n
0 1

]
and this pattern indeed holds, as the following computation shows more explicitly:

An+1 = An ×A =

[
1 n
0 1

] [
1 1
0 1

]
=

[
1 n+ 1
0 1

]
Using this result, now we have

+∞∑
n=0

Antn

n!
=

+∞∑
n=0

1

n!

[
1 n
0 1

]
tn

=

+∞∑
n=0

1

n!

[
tn ntn

0 tn

]

=

+∞∑
n=0

[
tn/n! ntn/n!

0 tn/n!

]
=

[∑+∞
n=0 t

n/n!
∑+∞
n=0 nt

n/n!

0
∑+∞
n=0 t

n/n!

]
Now

∑+∞
n=0

tn

n! = et by definition, and

+∞∑
n=0

ntn

n!
=

+∞∑
n=1

ntn

n!

=

+∞∑
n=1

tn

(n− 1)!

= t

+∞∑
n=1

tn−1

(n− 1)!

= t

+∞∑
n=0

tn

n!

= tet
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Put the result back into the matrix, the solution is

eAtC =

[
et tet

0 et

] [
c1
c2

]
=

[
c1e

t + c2te
t

c2e
t

]

Solution: An alternative approach that uses matrix exponentials, but avoids messy computations
is as follows. First, notice that: [

t t
0 t

]
=

[
t 0
0 t

]
+

[
0 t
0 0

]
where [

t 0
0 t

] [
0 t
0 0

]
=

[
0 t
0 0

] [
t 0
0 t

]
.

Call these matrices D and N respectively. Since they commute, we have eD+N = eDeN . Since:

eD =

[
et 0
0 et

]
and

eN =

[
1 t
0 1

]
we get:

eA =

[
et tet

0 et

]
Now we proceed as in the end of the first solution.

Solution: An alternative solution that avoids matrix exponentials is as follows. Notice that our
system is:

x′ = x+ y

y′ = y

Solving the second tells us y = c1e
t. Substituting into the top gives:

x′ − x = c1e
t

Solving this gives x = c2te
t + c1e

t, as we got in the solution above.
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7. (10 points)

(a) (6 points) Compute the Fourier series for the extension of

f(x) =

{
0 −π < x < 0

1 0 ≤ x ≤ π

as a 2π periodic function.

Solution: We compute for n > 0

a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

0

1 dx = 1

an =
1

π

∫ π

−π
f(x) cos(nx) dx =

1

π

∫ π

0

cos(nx) dx = 0

bn =
1

π

∫ π

−π
f(x) sin(nx) dx =

1

π

∫ π

0

sin(nx) dx =
1 + (−1)n+1

nπ

from which we see for k > 0 that
b2k = 0

and

b2k−1 =
2

(2k − 1)π
.

Thus, the Fourier series for f(x) is

F (x) =
1

2
+

2

π

∞∑
k=1

sin((2k − 1)x)

(2k − 1)

(b) (4 points) Use part (a) to find the sum of the convergent series

∞∑
k=1

(−1)k

2k − 1
.

Solution: By the convergence theorem for Fourier series we have

1 = F
(π

2

)
=

1

2
+

2

π

∞∑
k=1

(−1)k+1

(2k − 1)

so
∞∑
k=1

(−1)k

(2k − 1)
= −π

4
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8. This problem concerns solutions to the heat equation

∂u

∂t
= β

∂2u

∂x2
(1)

with periodic boundary conditions u(−L, t) = u(L, t), ∂u∂x (−L, t) = ∂u
∂x (L, t).

(a) (6 points) Using separation of variables u(x, t) = X(x)T (t) as usual, we end up having to solve

X ′′(x) + λX(x) = 0 (2)

with periodic boundary conditions X(−L) = X(L), X ′(−L) = X ′(L). For which λ ≥ 0 does this
boundary value problem have a nonzero solution, and what are those nonzero solutions?

Solution: When λ > 0, the general solution in this case is X(x) = c1 cos
√
λx + c2 sin

√
λx.

The boundary conditions give

c1 cos
√
λL− c2 sin

√
λL = c1 cos

√
λL+ c2 sin

√
λL (3)

c1 sin
√
λL+ c2 cos

√
λL = −c1 sin

√
λL+ c2 cos

√
λL (4)

which gives c2 sin
√
λL = c1 sin

√
λL = 0. So nonzero solutions are possible iff sin

√
λL = 0,

which is possible iff
√
λ = πn

L (for n a positive integer), so λ = π2n2

L2 . In this case the space of
solutions is 2-dimensional, spanned by

cos
πnx

L
, sin

πnx

L
. (5)

When λ = 0 the general solution is X(x) = c1 + c2x. The boundary conditions give c1− c2L =
c1 + c2L and c2 = c2, so in this case the space of solutions is 1-dimensional, spanned by the
constant function 1.

(b) (4 points) What are the corresponding nonzero solutions to the heat equation?

Solution: The t part T (t) of the corresponding solutions to the heat equation satisfy T ′(t) +
βλT (t) = 0, so T (t) is a scalar multiple of e−βλt. This gives solutions

e−β
π2n2t
L2 cos

πnx

L
, e−β

π2n2t
L2 sin

πnx

L
(6)

when λ > 0, and the constant solution 1 when λ = 0.
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9. (10 points) The Laplace equation is an important class of Partial Differential Equations that are very
prevalent in many physical problems (E&M, Fluid, Mechanics etc.) In this problem, we will examine
the form of solutions to the Laplace Equation. The Laplace equation is given as

∂2u

∂x2
+
∂2u

∂y2
= 0

(a) (4 points) First, suppose we can write the function u(x, y) as u(x, y) = X(x)Y (y). Based on this
assumption, produce two separate ordinary differential equations for the functions X and Y . (Hint:
an unknown constant k should be involved somewhere in your ODEs.)

Solution: Using separation of variables:

u(x, y) = X(x)Y (y)

Plug this form of solution back to the Laplace Equation given:

X ′′(x)Y (y) = −X(x)Y ′′(y)

X ′′

−X
=
Y ′′

Y
= k, k is some constant

⇒

{
X ′′(x) + kX(x) = 0

Y ′′(y)− kY (y) = 0

(b) (6 points) Discuss the different situations when k takes different values. Write out the general
solutions for X(x) and Y (y). Based on the form of the solutions of X and Y , Is it possible for a
nontrivial solution u(x, y) to be periodic with respect to both the x and y variables?

Solution: In any case of k, the auxilary equation of X equation has the form:

r2 + k = 0⇒ r = ±
√
−k

The auxilary equation of Y equation has the form:

r2 − k = 0⇒ r = ±
√
k

1. If k = 0
X(x) = a1 + a2x

Y (y) = b1 + b2y

2. If k < 0,−k > 0
X(x) = a1e

√
−kx + a2e

−
√
−kx

Y (y) = b1cos(
√
−ky) + b2sin(

√
−ky)

3. If k > 0,−k < 0
X(x) = a1cos(

√
−kx) + a2sin(

√
−kx)

Y (y) = b1e
√
−ky + b2e

−
√
−ky

Hence it is not possible for the solution to be periodic with respect to both variables. If k = 0,
then u(x, y) is linear in x and y and if it is nonzero it is not periodic in either direction. If
k > 0, then it is periodic in the x-direction, but not the y-direction (as long as it isn’t the
trivial solution, which is certainly periodic). The opposite is true when k < 0.
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