Name (Last, First): \qquad
Student ID: \qquad

1. Consider the matrix

$$
A=\left(\begin{array}{cc}
5 & 5 \\
-13 & -3
\end{array}\right) .
$$

Use a change of basis to represent A as a rotation and scaling transformation. In other words, find a real matrix

$$
C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

and an invertible real matrix P such that $A=P C P^{-1}$.
Solution. The characteristic equation is

$$
\begin{aligned}
& 0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
5-\lambda & 5 \\
-13 & -3-\lambda
\end{array}\right) \\
& =(5-\lambda)(-3-\lambda)+65=\lambda^{2}+2 \lambda+50 .
\end{aligned}
$$

This has two complex zeros

$$
\lambda_{ \pm}=1 \pm \sqrt{1-50}=1 \pm 7 i
$$

We can choose the eigenvalue $\lambda_{-}=1-7 i$ and find an associated eigenvector:

$$
\operatorname{Nul}\left(A-\lambda_{-} I\right)=\operatorname{Nul}\left(\begin{array}{cc}
4+7 i & 5 \\
-13 & -4+7 i
\end{array}\right)=\operatorname{Nul}\left(\begin{array}{cc}
4+7 i & 5 \\
0 & 0
\end{array}\right)
$$

(we didn't really row reduce here; the fact that λ_{-}was an eigenvalue tells us that there must be a row of zeros in the REF). We can choose the eigenvector $v=\binom{-5}{4+7 i}$, since

$$
\left(\begin{array}{cc}
4+7 i & 5 \\
0 & 0
\end{array}\right)\binom{-5}{4+7 i}=\binom{-5(4+7 i)+5(4+7 i)}{0}=0
$$

Then Theorem 9 tells us that $A=P C P^{-1}$, where

$$
P=\left(\begin{array}{ll}
\operatorname{Re}[v] & \operatorname{Im}[v]
\end{array}\right)=\left(\begin{array}{cc}
-5 & 0 \\
4 & 7
\end{array}\right)
$$

and

$$
C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)=\left(\begin{array}{cc}
1 & -7 \\
7 & 1
\end{array}\right),\left(\text { where } a-i b=\lambda_{-}=1-7 i\right)
$$

2. Inside of \mathbb{R}^{4}, consider the vectors

$$
v_{1}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right) .
$$

Find all vectors that are simultaneously orthogonal to v_{1}, v_{2}, and v_{3} with respect to the dot product.
Solution. First, let us find a basis of the null space

$$
\begin{aligned}
& \operatorname{Nul}\left(\begin{array}{c}
v_{1}^{T} \\
v_{2}^{T} \\
v_{3}^{T}
\end{array}\right)= \operatorname{Nul}\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right)=\operatorname{Nul}\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \\
&= \operatorname{Nul}\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \\
&=\operatorname{Nul}\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right)
\end{aligned}
$$

A basis is given by $\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -2\end{array}\right)$, and all scalings of this vector are exactly those vectors that are simultaneously orthogonal to v_{1}, v_{2} and v_{3}.

