Name (Last, First): \qquad
Student ID: \qquad

1. Consider the matrix

$$
A=\left(\begin{array}{cc}
5 & 5 \\
-13 & -3
\end{array}\right) .
$$

Use a change of basis to represent A as a rotation and scaling transformation. In other words, find a real matrix

$$
C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

and an invertible real matrix P such that $A=P C P^{-1}$.
2. Inside of \mathbb{R}^{4}, consider the vectors

$$
v_{1}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right) .
$$

Find all vectors that are simultaneously orthogonal to v_{1}, v_{2}, and v_{3} with respect to the dot product.

