
Name (Last, First):

Student ID:

1. Consider the matrix

$$A = \begin{pmatrix} 5 & 5\\ -13 & -3 \end{pmatrix}.$$

Use a change of basis to represent A as a rotation and scaling transformation. In other words, find a real matrix

$$C = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

and an invertible real matrix P such that $A = PCP^{-1}$.

2. Inside of $\mathbb{R}^4,$ consider the vectors

$$v_1 = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, v_2 = \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}, v_3 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}.$$

Find all vectors that are simultaneously orthogonal to v_1, v_2 , and v_3 with respect to the dot product.