Name (Last, First): \qquad
Student ID: \qquad

1) Consider the matrix

$$
A=\left[\begin{array}{ccc}
4 & 1 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

Find a basis for the eigenspace with eigenvalue $\lambda=1$.
Solution: The eigenspace of A corresponding to an eigenvalue λ is the null space of the matrix $A-\lambda I$. For $\lambda=1$, we have

$$
A-\lambda I=A-I=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-2 & 0 & 0 \\
-2 & 0 & 0
\end{array}\right]
$$

A vector $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is a solution to $(A-I) \mathbf{x}=\mathbf{0}$ if and only if

$$
3 x_{1}+x_{2}+x_{3}=0 \quad-2 x_{1}=0
$$

so if and only if

$$
x_{1}=0 \quad x_{3}=-x_{2}
$$

Thus the general solution is

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
x_{2} \\
-x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

Thus the eigenspace is one-dimensional with basis

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

2) Find the characteristic equation and the eigenvalues of the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
$$

Solution:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right]=(1-\lambda)^{2}-4=(1-\lambda-2)(1-\lambda+2)=(-1-\lambda)(3-\lambda)
$$

Thus the characteristic equation is

$$
(-1-\lambda)(3-\lambda)=0
$$

and the eigenvalues are -1 and 3 .

