Name (Last, First): \qquad
Student ID: \qquad

1) Find the dimension of the subspace H inside of \mathbb{R}^{4} given by all vectors of the form

$$
\left[\begin{array}{c}
2 a+4 b+c+5 d \\
a-7 b-4 c+7 d \\
-a+b+c-4 d \\
-a-b-3 d
\end{array}\right]
$$

where a, b, c, d are any real numbers.
Solution: $\left[\begin{array}{c}2 a+4 b+c+5 d \\ a-7 b-4 c+7 d \\ -a+b+c-4 d \\ -a-b-3 d\end{array}\right]=a \cdot\left[\begin{array}{c}2 \\ 1 \\ -1 \\ -1\end{array}\right]+b \cdot\left[\begin{array}{c}4 \\ -7 \\ 1 \\ -1\end{array}\right]+c \cdot\left[\begin{array}{c}1 \\ -4 \\ 1 \\ 0\end{array}\right]+d \cdot\left[\begin{array}{c}5 \\ 7 \\ -4 \\ -3\end{array}\right]$.
So $H=\operatorname{Span}\left\{\left[\begin{array}{c}2 \\ 1 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{c}4 \\ -7 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}5 \\ 7 \\ -4 \\ -3\end{array}\right]\right\}$.
Thus $\operatorname{dim}(H)$ equals the rank of the matrix $A=\left[\begin{array}{cccc}2 & 4 & 1 & 5 \\ 1 & -7 & -4 & 7 \\ -1 & 1 & 1 & -4 \\ -1 & -1 & 0 & -3\end{array}\right]$.
A row-reduces to $\left[\begin{array}{cccc}1 & 0 & -0.5 & 3.5 \\ 0 & 1 & 0.5 & 0.5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, $\operatorname{so} \operatorname{dim}(H)=\operatorname{rank}(A)=2$.
2) If A is a 9×6 matrix, what is the largest possible dimension of the row space of A ? What is the largest possible dimension of the null space $\operatorname{Nul}(A)$?

Solution: The number of pivots in A cannot be more than the number of rows or the number of columns of A, so A has at most 6 pivots. Since $\operatorname{dim}(\operatorname{Row}(A))=\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))$, the largest possible value for $\operatorname{dim}(\operatorname{Row}(A))$ is also 6 .

By the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=6$, so the largest possible value for $\operatorname{dim}(\operatorname{Nul}(A))$ is 6 , which occurs when $\operatorname{rank}(A)=0$.

