Name (Last, First): \qquad
Student ID: \qquad

1. Is the set W of 2×2 symmetric matrices a subspace of the vector space V of all 2×2 matrices?
(Recall that a matrix A is symmetric if and only if $A^{T}=A$. Equivalently, a symmetric 2×2 matrix is of the form $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$.)

There are two ways of solving this problem, choose your favorite one!
Solution 1: All we need to show that the zero-matrix is in W, and that W is closed under addition and scalar multiplication.

Zero-vector: The 2×2 zero-matrix $O=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ satisfies $O^{T}=O$, therefore O is in W
Closed under addition: Suppose A and B are in W. Then $A^{T}=A$ and $B^{T}=B$. But then, by properties of transpose:

$$
(A+B)^{T}=A^{T}+B^{T}=A+B
$$

And therefore $A+B$ is symmetric. Since A and B were arbitrary in W, it follows that W is closed under addition

Closed under scalar multiplication: Suppose A in in W and c is a real number, then $A^{T}=0$, and so, by properties of transposes:

$$
(c A)^{T}=c\left(A^{T}\right)=c A
$$

And therefore $c A$ is symmetric. Since A and c were arbitrary, it follows that W is closed under multiplication.

Therefore, W is a subspace of V.

Solution 2:

Notice that every matrix $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ can be written as:

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & b \\
b & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & c
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Therefore, it follows that:

$$
W=\operatorname{Span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

But since the span of any number of vectors in V is a subspace of V, it follows that W is a subspace of V.
2. Let $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -4\end{array}\right],\left[\begin{array}{c}2 \\ -3\end{array}\right]\right\}$ be a basis of \mathbb{R}^{2}.
a. Calculate the change-of-coordinates matrix $P_{\mathcal{B}}$ from \mathcal{B} to the standard basis of \mathbb{R}^{2}.

$$
P_{\mathcal{B}}=\left[\begin{array}{cc}
1 & 2 \\
-4 & -3
\end{array}\right]
$$

b. Use part a. to calculate $[\mathbf{x}]_{\mathcal{B}}$ given $\mathbf{x}=\left[\begin{array}{l}-1 \\ -6\end{array}\right]$

We know that:

$$
\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

And therefore:

$$
[\mathbf{x}]_{\mathcal{B}}=\left(P_{\mathcal{B}}\right)^{-1} \mathbf{x}=\left[\begin{array}{cc}
1 & 2 \\
-4 & -3
\end{array}\right]^{-1}\left[\begin{array}{l}
-1 \\
-6
\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}
-3 & -2 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
-1 \\
-6
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
15 \\
-10
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

