Name (Last, First): \qquad
Student ID:

1. Is the set W of 2×2 symmetric matrices a subspace of the vector space V of all 2×2 matrices?
(Recall that a matrix A is symmetric if and only if $A^{T}=A$. Equivalently, a symmetric 2×2 matrix is of the form $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$.)
2. Let $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -4\end{array}\right],\left[\begin{array}{c}2 \\ -3\end{array}\right]\right\}$ be a basis of \mathbb{R}^{2}.
a. Calculate the change-of-coordinates matrix $P_{\mathcal{B}}$ from \mathcal{B} to the standard basis of \mathbb{R}^{2}.
b. Use part a. to calculate $[\mathbf{x}]_{\mathcal{B}}$ given $\mathbf{x}=\left[\begin{array}{l}-1 \\ -6\end{array}\right]$
