Name (Last, First): \qquad
Student ID:
(1) Let A be a 6×8 matrix. Suppose that the null space of A has a basis consisting of 3 vectors. Do the columns of A span \mathbb{R}^{6} ? Justify your answer.

Solution: According to the Rank Theorem (Section 2.7, Theorem 13), we have rank $(A)+$ $\operatorname{dim} \operatorname{Nul}(A)=8$. We are given that $\operatorname{dim} \operatorname{Nul}(A)=3$. Thus $\operatorname{rank}(A)=5$. By Section 2.6 Theorem 12, the pivot columns of A form a basis for the column space of A, so there are 5 pivot columns. Thus there are 5 pivot rows. This means there is a row which does not contain a pivot; thus the columns of A do not span \mathbb{R}^{6}.
(2) Compute the determinant of the following matrix.

$$
\left[\begin{array}{cccc}
3 & -1 & 0 & 2 \\
4 & 9 & 2 & 0 \\
0 & 1 & 0 & 3 \\
-1 & -2 & 0 & 2
\end{array}\right]
$$

Solution: We use Section 3.1, Theorem 1 to compute the determinant:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cccc}
3 & -1 & 0 & 2 \\
4 & 9 & 2 & 0 \\
0 & 1 & 0 & 3 \\
-1 & -2 & 0 & 2
\end{array}\right] \stackrel{(1)}{=} 0 \cdot(-1)^{1+3} \operatorname{det}\left[\begin{array}{ccc}
4 & 9 & 0 \\
0 & 1 & 3 \\
-1 & -2 & 2
\end{array}\right]+2 \cdot(-1)^{2+3} \operatorname{det}\left[\begin{array}{ccc}
3 & -1 & 2 \\
0 & 1 & 3 \\
-1 & -2 & 2
\end{array}\right] \\
&+0 \cdot(-1)^{3+3} \operatorname{det}\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 9 & 0 \\
-1 & -2 & 2
\end{array}\right]+0 \cdot(-1)^{4+3} \operatorname{det}\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 9 & 0 \\
0 & 1 & 3
\end{array}\right] \\
&= 2 \cdot(-1)^{2+3} \operatorname{det}\left[\begin{array}{ccc}
3 & -1 & 2 \\
0 & 1 & 3 \\
-1 & -2 & 2
\end{array}\right] \\
& \stackrel{(2)}{=} 2 \cdot(-1)^{2+3}\left(3 \cdot(-1)^{1+1} \operatorname{det}\left[\begin{array}{cc}
1 & 3 \\
-2 & 2
\end{array}\right]+0 \cdot(-1)^{2+1} \operatorname{det}\left[\begin{array}{ll}
-1 & 2 \\
-2 & 2
\end{array}\right]\right. \\
&\left.+(-1) \cdot(-1)^{3+1} \operatorname{det}\left[\begin{array}{cc}
-1 & 2 \\
1 & 3
\end{array}\right]\right) \\
&= 2 \cdot(-1)^{2+3}\left(3 \cdot(-1)^{1+1}(8)+(-1) \cdot(-1)^{3+1}(-5)\right) \\
&=-58 .
\end{aligned}
$$

In the step marked (1), we use the cofactor expansion across the 3rd column; in the step marked (2), we use the cofactor expansion across the 1st column.

