Name (Last, First): \qquad
Student ID: \qquad

1. Determine if the columns of the matrix form a linearly independent set.

$$
\left[\begin{array}{ccc}
0 & 2 & 3 \\
1 & 3 & 6 \\
-1 & 1 & 0
\end{array}\right]
$$

Solution 1. The set is linearly dependent. This is because

$$
3\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+3\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]-2\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

so that the three columns form a linearly dependent set.

Solution 2. Let's take the associated augmented matrix for the homogeneous equation.

$$
\left[\begin{array}{cccc}
0 & 2 & 3 & 0 \\
1 & 3 & 6 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right]
$$

In order to make the matrix to be in Row Echelon Form, we need the below row reduction steps.

$$
\left[\begin{array}{cccc}
0 & 2 & 3 & 0 \\
1 & 3 & 6 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 3 & 6 & 0 \\
0 & 2 & 3 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 3 & 6 & 0 \\
0 & 2 & 3 & 0 \\
0 & 4 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 3 & 6 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The first \sim is obtained by interchanging 1st and 2nd rows.
The second \sim : Changing 3rd row into 1st row +3 rd row.
The last \sim : Changing 3rd row into 3rd row $+(-2) \times 2$ nd row.
Hence, we can find a solution $z=$ free from 3rd row. $y=-\frac{3}{2} z$ from 2nd row. $x=y$ from 1st and 2 nd row. Find one example of x, y, and z by setting $z=-2$, we get the weights x, y, and z (not all zeros) that make the linear combination $x \mathbf{x}_{1}+y \mathbf{x}_{2}+z \mathbf{x}_{3}$ become zero.
2. Let $T(x, y)=(2 x+y, x)$. Show that T is a one-to-one linear transformation. Does T map \mathbb{R}^{2} onto \mathbb{R}^{2} ?

Solution. First of all,

$$
\begin{aligned}
T\left(\left(x_{1}, y_{1}\right)\right)+T\left(\left(x_{2}, y_{2}\right)\right) & =\left(2 x_{1}+y_{1}, x_{1}\right)+\left(2 x_{2}+y_{2}, x_{2}\right) \\
& =\left(2\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right), x_{1}+x_{2}\right)=T\left(\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right)
\end{aligned}
$$

Also, $T(c(x, y))=(2 c x+c y, c x)=c(2 x+y, x)=c T((x, y))$. Hence, T is a linear transformation.
Now, in order to prove that T is one-to-one, (because T is a linear transformation and by Theorem 11 (Chapter 1.9)) we only need to show that

If $T(x, y)=(0,0)$ then $x=0$ and $y=0$.
Suppose that $T(x, y)=(0,0)$, then it implies that $2 x+y=0, x=0$. So, obviously, you get $x=0$ and $y=0$. Henceforth, T is a one-to-one linear transformation.

For the last question, the answer is YES. To get this answer, we need the argument below.
For an arbitrary element in \mathbb{R}^{2}, say (z, w), if we define $x=w, y=z-2 w$ then $T(x, y)=(2 x+y, x)=(2 w+z-2 w, w)=(z, w)$.
Therefore, T maps \mathbb{R}^{2} onto \mathbb{R}^{2}.

