Name (Last, First): \qquad
Student ID: \qquad

1. Find the general solution of the linear system corresponding to the following augmented matrix.

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & 4 \\
-2 & 4 & -5 & 6
\end{array}\right]
$$

Solution. First, convert the matrix into REF by applying the row operations.

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & 4 \\
-2 & 4 & -5 & 6
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & -1 & 4 \\
0 & 0 & -7 & 14
\end{array}\right] \quad \text { (Replacement) }
$$

where the corresponding system of linear equations is

$$
\begin{aligned}
x_{1}-2 x_{2}-x_{3} & =4 \\
-7 x_{3} & =14
\end{aligned}
$$

Therefore, $x_{3}=-2$ and $x_{1}-2 x_{2}=2$.
If we pick x_{2} as a free variable, the general solution reads

$$
\begin{aligned}
& x_{1}=2 x_{2}+2 \\
& x_{2}=\text { free variable } \\
& x_{3}=-2
\end{aligned}
$$

2. Determine if \mathbf{b} is a linear combination of the vectors formed from the columns of the matrix A.

$$
A=\left[\begin{array}{rrr}
1 & -4 & 2 \\
0 & 3 & 5 \\
-2 & 8 & -4
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
3 \\
-7 \\
-3
\end{array}\right]
$$

Solution. Note that \mathbf{b} is a linear combination of the column vectors of A if and only if $A \mathbf{x}=\mathbf{b}$ has a solution.

Calculate a REF of the augmented matrix $[A \mid \mathbf{b}]$:

$$
\begin{aligned}
{[A \mid \mathbf{b}] } & =\left[\begin{array}{rrr|r}
1 & -4 & 2 & 3 \\
0 & 3 & 5 & -7 \\
-2 & 8 & -4 & -3
\end{array}\right] \\
& \sim\left[\begin{array}{rrr|r}
1 & -4 & 2 & 3 \\
0 & 3 & 5 & -7 \\
0 & 0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

The last row $\left(\begin{array}{llll}0 & 0 & 0 & 3\end{array}\right)$ indicates that the solution does not exist. Hence, \mathbf{b} is NOT a linear combination of the column vectors of A.

