Name (Last, First): \qquad
Student ID: \qquad

1. Find a general solution to the homogeneous equation:

$$
\left(\frac{d}{d t}-5\right)^{3}\left(\frac{d^{2}}{d t^{2}}+4\right) y=0
$$

Solution. The auxiliary equation becomes

$$
(r-5)^{3}\left(r^{2}+4\right)=0
$$

with the roots

$$
\begin{cases}r=5 & \text { (triple) } \\ r=2 i & \text { (single) } \\ r=-2 i & \text { (single) }\end{cases}
$$

For the triple root $r=5$, we obtain three linearly independent solutions

$$
y_{1}=e^{5 t}, y_{2}=t e^{5 t}, y_{3}=t^{2} e^{5 t}
$$

The complex roots $r= \pm 2 i$ correspond to

$$
y_{4}=\cos 2 t, y_{5}=\sin 2 t
$$

Hence, a general solution y consists of all possible linear combinations of those five linearly independent solutions:

$$
y=C_{1} e^{5 t}+C_{2} t e^{5 t}+C_{3} t^{2} e^{5 t}+C_{4} \cos 2 t+C_{5} \sin 2 t
$$

where C_{1}, \cdots, C_{5} are arbitrary.
2. Let

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right] .
$$

Determine if $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ form a fundamental solution set of the system:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \mathbf{x}
$$

Solution. First, show that \mathbf{x}_{1} and \mathbf{x}_{1} are solutions to the system by checking

$$
\begin{gathered}
\mathbf{x}_{1}^{\prime}=\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right]^{\prime}=\left[\begin{array}{c}
-\cos t \\
-\sin t
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \mathbf{x}_{1} \\
\mathbf{x}_{2}^{\prime}=\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right]^{\prime}=\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \mathbf{x}_{2}
\end{gathered}
$$

Since \mathbf{x}_{1} and \mathbf{x}_{2} are solutions to a homogeneous linear system, it suffices to check if the Wronskian is equal to zero at some point t_{0} in order to determine the linear independence of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$. Then the Wronskian reads

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left[\begin{array}{cc}
-\sin t & \cos t \\
\cos t & \sin t
\end{array}\right]
$$

Choose any point t_{0}, say $t_{0}=0$, so that

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](0)=\operatorname{det}\left[\begin{array}{cc}
-\sin 0 & \cos 0 \\
\cos 0 & \sin 0
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=-1 \neq 0
$$

Therefore, the Wronskian is always nonzero at any t, which implies that the set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is linearly independent. Hence, $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a fundamental solution set of the system.

