Name (Last, First):

Student ID: \_\_\_\_\_

1. Find a general solution to the homogeneous equation:

$$\left(\frac{d}{dt} - 5\right)^3 \left(\frac{d^2}{dt^2} + 4\right) y = 0$$

Solution. The auxiliary equation becomes

$$(r-5)^3(r^2+4) = 0$$

with the roots

$$\begin{cases} r = 5 & \text{(triple)} \\ r = 2i & \text{(single)} \\ r = -2i & \text{(single)} \end{cases}$$

For the triple root r = 5, we obtain three linearly independent solutions

.

$$y_1 = e^{5t}, \ y_2 = te^{5t}, \ y_3 = t^2 e^{5t}.$$

The complex roots  $r = \pm 2i$  correspond to

$$y_4 = \cos 2t, \ y_5 = \sin 2t$$

Hence, a general solution y consists of all possible linear combinations of those five linearly independent solutions:

$$y = C_1 e^{5t} + C_2 t e^{5t} + C_3 t^2 e^{5t} + C_4 \cos 2t + C_5 \sin 2t$$

where  $C_1, \dots, C_5$  are arbitrary.

2. Let

$$\mathbf{x}_1 = \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}$$

Determine if  $\{\mathbf{x}_1, \mathbf{x}_2\}$  form a fundamental solution set of the system:

$$\mathbf{x}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}$$

Solution. First, show that  $\mathbf{x}_1$  and  $\mathbf{x}_1$  are solutions to the system by checking

$$\mathbf{x}_{1}' = \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix}' = \begin{bmatrix} -\cos t \\ -\sin t \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}_{1}$$
$$\mathbf{x}_{2}' = \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}' = \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos t \\ \sin t \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}_{2}$$

Since  $\mathbf{x}_1$  and  $\mathbf{x}_2$  are solutions to a homogeneous linear system, it suffices to check if the Wronskian is equal to zero at some point  $t_0$  in order to determine the linear independence of  $\{\mathbf{x}_1, \mathbf{x}_2\}$ . Then the Wronskian reads

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \det \begin{bmatrix} -\sin t & \cos t \\ \cos t & \sin t \end{bmatrix}$$

Choose any point  $t_0$ , say  $t_0 = 0$ , so that

$$W[\mathbf{x}_1, \mathbf{x}_2](0) = \det \begin{bmatrix} -\sin 0 & \cos 0\\ \cos 0 & \sin 0 \end{bmatrix} = \det \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} = -1 \neq 0$$

Therefore, the Wronskian is always nonzero at any t, which implies that the set  $\{\mathbf{x}_1, \mathbf{x}_2\}$  is linearly independent. Hence,  $\{\mathbf{x}_1, \mathbf{x}_2\}$  is a fundamental solution set of the system.