Name (Last, First): \qquad
Student ID:

1. Find a particular solution to the following differential equation.

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 t e^{t}
$$

Solution. We first solve the correpsonding homogeneous differential equation:

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

The auxiliary equation is

$$
r^{2}-2 r-3=0
$$

which has two distinct zeroes 3 and -1 . Since 1 is not a zero of the auxiliary equation, $y_{p}=(a t+b) e^{t}$ will work for some real numbers a and b. We plug in y_{p} to the differential equation:

$$
\begin{aligned}
3 t e^{t} & =y_{p}^{\prime \prime}-2 y_{p}^{\prime}-3 y_{p} \\
& =(-4 a t-4 b) e^{t}
\end{aligned}
$$

This implies that $a=-\frac{3}{4}$ and $b=0$. Therefore,

$$
y_{p}=-\frac{3}{4} t e^{t}
$$

is a particular solution to the given differentail equation.
2. Find a general solution to the following differential equation.

$$
y^{\prime \prime}+3 y^{\prime}+2 y=t+e^{t}
$$

Solution. We first solve the correpsonding homogeneous differential equation:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The auxiliary equation is

$$
r^{2}+3 r+2=0
$$

which has two distinct zeroes -2 and -1 . We then get a general solution y_{h} of the homogeneous equation:

$$
y_{h}=c_{1} e^{-2 t}+c_{2} e^{-t}
$$

where c_{1} and c_{2} are arbitray real numbers. To find a particular solution for the given differential equation, we break it up into two parts; we find a particular solution for

$$
y^{\prime \prime}+3 y^{\prime}+2 y=t
$$

and

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}
$$

respectively. And then we add them to obtain a particular solution for the given differential equation. For the former, 0 is not a zero of the auxiliary equation and so $y_{p_{1}}=a t+b$ will work for some real numbers a and b. Plug it in to the former:

$$
\begin{aligned}
t & =y_{p_{1}}^{\prime \prime}+3 y_{p_{1}}^{\prime}+2 y_{p_{1}} \\
& =2 a t+3 a+2 b
\end{aligned}
$$

This implies that $a=\frac{1}{2}$ and $b=-\frac{3}{4}$. So,

$$
y_{p_{1}}=\frac{1}{2} t-\frac{3}{4}
$$

is a particular solution to the former.
For the latter, 1 is not a zero of the auxiliary equation and so $y_{p_{1}}=c e^{t}$ will work for some real number c. Plug it in to the latter:

$$
\begin{aligned}
e^{t} & =y_{p_{2}}^{\prime \prime}+3 y_{p_{2}}^{\prime}+2 y_{p_{2}} \\
& =6 c e^{t}
\end{aligned}
$$

This implies that $c=\frac{1}{6}$. So,

$$
y_{p_{2}}=\frac{1}{6} e^{t}
$$

is a particular solution to the latter. Therefore,

$$
y_{p}:=y_{p_{1}}+y_{p_{2}}=\frac{1}{2} t-\frac{3}{4}+\frac{1}{6} e^{t}
$$

is a particular solution to the original differentail equation. All in all,

$$
y_{h}+y_{p}=c_{1} e^{-2 t}+c_{2} e^{-t}+\frac{1}{2} t-\frac{3}{4}+\frac{1}{6} e^{t}
$$

is a general solution for the differential equation wherer c_{1} and c_{2} are arbitrary real numbers.

