Name (Last, First): \qquad
Student ID: \qquad

1. Find an orthogonal matrix P and diagonal matrix D such that $A=P D P^{-1}$ where

$$
A=\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right]
$$

Solution. The characteristic equation is $\operatorname{det}\left[\begin{array}{cc}2-\lambda & 3 \\ 3 & 2-\lambda\end{array}\right]=\lambda^{2}-4 \lambda-5=0$
Therefore eigenvalues are $\lambda_{1}=5, \lambda_{2}=-1$
The eigenvector for $\lambda_{1}=5$ will be nonzero vectors in $N u l\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$, we can pick $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
The eigenvector for $\lambda_{2}=-1$ will be nonzero vectors in Nul $\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$, we can pick $\left[\begin{array}{c}1 \\ -1\end{array}\right]$
We know that for a symmetric matrix, eigenvectors with different eigenvalues are orthogonal to each other, and so to orthogonally diagonalize the matrix, we only have to normalize the eigenvectors to unit vectors.

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right] \quad\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \rightarrow\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2}
\end{array}\right]
$$

So $P=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\end{array}\right], \quad D=\left[\begin{array}{cc}5 & 0 \\ 0 & -1\end{array}\right]$.
2. Solve the initial value problem

$$
y^{\prime \prime}+6 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=1
$$

Solution. The auxiliary equation is $\lambda^{2}+6 \lambda+5=0$, the solutions are $-1,-5$, since we have two different real solutions, the general solution to the equation will be $C_{1} e^{-x}+C_{2} e^{-5 x}$. Plug in the initial condition, we have:

$$
\begin{array}{r}
C_{1}+C_{2}=1 \\
-C_{1}-5 C_{2}=1
\end{array}
$$

Solve the equation above, we have $C_{1}=\frac{3}{2}, C_{2}=-\frac{1}{2}$, so the solution is $\frac{3}{2} e^{-x}-\frac{1}{2} e^{-5 x}$

