Name (Last, First): \qquad
Student ID:

1. Find the set of all \mathbf{x} in \mathbb{R}^{2} minimizing $\|A \mathbf{x}-\mathbf{b}\|$ where

$$
A=\left[\begin{array}{cc}
2 & 1 \\
4 & -1 \\
2 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right] .
$$

Solution. This is equivalent to solving the least-squares problem for $A \mathbf{x}=\mathbf{b}$, which we can do by solving the normal equations $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. We can compute

$$
A^{T} A=\left[\begin{array}{cc}
24 & 0 \\
0 & 3
\end{array}\right], \quad A^{T} \mathbf{b}=\left[\begin{array}{c}
12 \\
9
\end{array}\right] .
$$

Then $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ has the unique solution

$$
\hat{\mathbf{x}}=\left[\begin{array}{c}
1 / 2 \\
3
\end{array}\right]
$$

which is the unique value of \mathbf{x} minimizing $\|A \mathbf{x}-\mathbf{b}\|$.
2. Let H be the subspace of \mathbb{R}^{4} given by

$$
H=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-3 \\
1
\end{array}\right]\right\}
$$

Find an orthonormal basis for H.
Solution. Let v_{1}, v_{2}, v_{3} be the three vectors given above that span H. We'll use the Gram-Schmidt process:

$$
\begin{aligned}
& u_{1}=v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \\
& u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right], \\
& u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\left[\begin{array}{c}
1 \\
1 \\
-2 \\
0
\end{array}\right] .
\end{aligned}
$$

Then $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis for H. To produce an orthonormal basis, we normalize these vectors, yielding the set

$$
\left\{\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
1 \\
-2 \\
0
\end{array}\right]\right\}
$$

