Practice Midterm 2, MATH 54, Linear Algebra and Differential Equations, Fall 2014

Name (Last, First):

Student ID: _____

Circle your section:

201	Shin	8am	71 Evans	212	Lim	$1 \mathrm{pm}$	3105 Etcheverry
202	Cho	8am	75 Evans	213	Tanzer	2pm	35 Evans
203	Shin	9am	105 Latimer	214	Moody	$2 \mathrm{pm}$	81 Evans
204	Cho	9am	254 Sutardja Dai	215	Tanzer	3pm	206 Wheeler
205	Zhou	$10 \mathrm{am}$	254 Sutardja Dai	216	Moody	$3 \mathrm{pm}$	61 Evans
206	Theerakarn	$10 \mathrm{am}$	179 Stanley	217	Lim	8am	310 Hearst
207	Theerakarn	11am	179 Stanley	218	Moody	$5\mathrm{pm}$	71 Evans
208	Zhou	11am	254 Sutardja Dai	219	Lee	$5 \mathrm{pm}$	3111 Etcheverry
209	Wong	$12 \mathrm{pm}$	3 Evans	220	Williams	$12 \mathrm{pm}$	289 Cory
210	Tabrizian	$12 \mathrm{pm}$	9 Evans	221	Williams	$3 \mathrm{pm}$	140 Barrows
211	Wong	$1 \mathrm{pm}$	254 Sutardja Dai	222	Williams	$2\mathrm{pm}$	220 Wheeler
Ifnon	o of the above	plasso	vulain.				

If none of the above, please explain:

This is a closed book exam, no notes allowed. It consists of 6 problems, each worth 10 points. We will grade all 6 problems, and count your top 5 scores.

Problem	Maximum Score	Your Score
1	10	
2	10	
3	10	
4	10	
5	10	
6 Total	10	
Possible	50	

1

Problem 1) Decide if the following statements are ALWAYS TRUE or SOMETIMES FALSE. You do not need to justify your answers. Write the full word **TRUE** or **FALSE** in the answer boxes of the chart. (Correct answers receive 2 points, incorrect answers or blank answers receive 0 points.)

Statement	1	2	3	4	5
Answer					

- 1) If A is an $n \times n$ diagonalizable matrix with a single eigenvalue λ , then $A = \lambda I_n$.
- 2) If A and B are diagonalizable $n \times n$ matrices, then A + B is also diagonalizable.
- 3) If the columns of an $n \times n$ matrix are orthonormal, then its rows are as well.
- 4) If A and B are similar $n \times n$ matrices, then they have the same rank.

5) Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are vectors in \mathbb{R}^n with \mathbf{v}_1 orthogonal to \mathbf{v}_2 . Then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form an orthogonal set if and only if the projection of \mathbf{v}_3 to the span of $\mathbf{v}_1, \mathbf{v}_2$ is the zero vector.

Problem 2) Indicate with an X in the chart all of the answers that satisfy the questions below. You do not need to justify your answers. It is possible that any number of the answers satisfy the questions. (A completely correct row of the chart receives 2 points, a partially correct row receives 1 point, but any incorrect X in a row leads to 0 points.)

	(a)	(b)	(c)	(d)	(<i>e</i>)
Question 1					
Question 2					
Question 3					
Question 4					
Question 5					

1) Let A be an $n \times n$ matrix. Which of the following is equivalent to the statement: A is not invertible?

- a) 0 is an eigenvalue of A.
- b) 1 is an eigenvalue of $I_n A$.
- c) 0 is a solution of $det(A \lambda I_n) = 0$.
- d) $\det(A \lambda I_n) = (1 \lambda)^n$.
- e) A is diagonalizable.

2) Which of the following matrices are diagonalizable with real eigenvalues?

$$a)\begin{bmatrix}1 & 3\\3 & 1\end{bmatrix} \quad b)\begin{bmatrix}1 & -3\\3 & 1\end{bmatrix} \quad c)\begin{bmatrix}1 & 0 & 0\\1 & 1 & 0\\3 & 2 & 1\end{bmatrix} \quad d)\begin{bmatrix}-1 & 0 & 0\\1 & 0 & 0\\1 & 1 & 1\end{bmatrix} \quad d)\begin{bmatrix}0 & 0 & 1\\0 & 1 & 0\\1 & 0 & 0\end{bmatrix}$$

3) Which of the following linear transformations is an isomorphism?

$$a) P_{2} \to \mathbb{R}^{3} \quad p(x) \mapsto \begin{bmatrix} p(0) \\ p'(0) \\ p''(0) \end{bmatrix}$$
$$b) P_{2} \to \mathbb{R}^{3} \quad p(x) \mapsto \begin{bmatrix} p(0) \\ p(1) \\ p(2) \end{bmatrix}$$
$$c) \mathbb{R}^{3} \to P_{2} \quad \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mapsto p(x) = (a-b) + (b-c)x + (c-a)x^{2}$$
$$d) \mathbb{R}^{3} \to P_{2} \quad \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mapsto p(x) = (a+b+c) + (b+c)x + ax^{2}$$
$$e) P_{2} \to P_{2} \quad T(p(x)) = p'(x) + x^{2}p''(x)$$

4) Which of the following lists of vectors in \mathbb{R}^3 is an orthonormal set?

a)
$$\begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
 b) $\begin{bmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$, $\begin{bmatrix} -\sqrt{2}/2 \\ 0 \\ \sqrt{2}/2 \end{bmatrix}$ c) $\begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \\ 0 \end{bmatrix}$
d) $\begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2/3 \\ -1/3 \\ 2/3 \end{bmatrix}$ e) $\begin{bmatrix} 2/3 \\ -1/3 \\ 2/3 \end{bmatrix}$, $\begin{bmatrix} -2/3 \\ 1/3 \\ -2/3 \end{bmatrix}$

5) Suppose A is a 4×3 matrix whose columns are orthogonal. Which of the following matrices must also have orthogonal columns?

a) The reduced row echelon form of A.

- b) A^T .
- $c) AA^T.$
- d) $A^T A$.
- e) -A.

Problem 3) Consider the 4×4 matrix

$$A = \begin{bmatrix} 1 & -1 & -1 & 1\\ 1/2 & -1/2 & 1/2 & -1/2\\ -3/2 & 3/2 & 1/2 & -1/2\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

a) (8 points) Find 4×4 matrices P and D, with P invertible and D diagonal, such that

$$A = PDP^{-1}$$

b) (2 points) Find a vector \mathbf{x} such that $A^{54}\mathbf{x} = \mathbf{x}$.

Problem 4) Recall that given a basis B of a vector space V, a basis C of a vector space W, and a linear transformation $T: V \to W$, we can assign a matrix [T] such that

$$[T\mathbf{x}]_C = [T][\mathbf{x}]_B,$$
 for all \mathbf{x} in V .

a) (6 points) Find a basis B of $V = P_1$ and a basis C of $W = P_2$ such that

$$[T] = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$$

is the matrix of the linear transformation

$$T: V \to W$$
 $T(p(x)) = \frac{d}{dx}p(x) - xp(x)$

b) (4 points) Is it possible to find bases such that

$$[T] = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}?$$

Either find such bases or justify why it is not possible.

Problem 5) Consider the subspace W of \mathbb{R}^3 spanned by

$$\mathbf{u} = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}$$

a) (5 points) Find a nonzero vector \mathbf{w} in W orthogonal to \mathbf{u} .

b) (5 points) Find the vector in W closest to the vector

$$\mathbf{y} = \begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix}$$

Problem 6) Decide if the following assertions are ALWAYS TRUE or SOMETIMES FALSE. If always true, give a proof. If sometimes false, give a counterexample.

a) (5 points) Assertion: Suppose the characteristic equation of an 2×2 matrix is $\lambda^2 = 0$ and A^2 is diagonalizable. Then A is diagonalizable.

b) (5 points) Assertion: Suppose there are $n \times n$ matrices A, P and D, with P invertible and D diagonal, such that

$$A = PDP^{-1}$$

Then the columns of P are eigenvectors for A.