Name (Last, First): \qquad
Student ID: \qquad
Circle your GSI and section:

Scerbo	8 am	200 Wheeler
Scerbo	9 am	3109 Etcheverry
McIvor	12 pm	3107 Etcheverry
McIvor	11 am	3102 Etcheverry
Mannisto	12 pm	3 Evans
Wayman	1 pm	179 Stanley
Wayman	2 pm	81 Evans
Forman	2 pm	3109 Etcheverry
Forman	4 pm	3105 Etcheverry
Melvin	5 pm	24 Wheeler
Melvin	4 pm	151 Barrows
Mannisto	11 am	3113 Etcheverry
McIvor	2 pm	179 Stanley

If none of the above, please explain: \qquad
This is a closed book exam, no notes allowed. It consists of 6 problems, each worth 10 points, of which you must complete 5 . Choose one problem not to be graded by crossing it out in the box below. You must justify every one of your answers unless otherwise directed.

Problem	Maximum Score	Your Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total Possible	50	

Name (Last, First): \qquad

1. a. State what it means for a list of vectors v_{1}, \ldots, v_{n} in a vector space V over a field F to be linearly independent.

For any $c_{1}, \ldots, c_{n} \in F$, if we have $c_{1} v_{1}+\cdots c_{n} v_{n}=0$, then we have $c_{1}=\cdots=c_{n}=0$.
b. Consider the real vector space $P_{\leq 2}(\mathbb{R})$ of polynomials of degree less than or equal to two with real coefficients.

For what vectors $p(x) \in P_{\leq 2}(\mathbb{R})$ is the list $p(x), p^{\prime}(x), p^{\prime \prime}(x)$ linearly independent? (Here $p^{\prime}(x)$ denotes the derivative of $p(x)$, and $p^{\prime \prime}(x)$ denotes the second derivative of $p(x)$.)

We must have $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$, with $a_{2} \neq 0$.
To see this, first calculate $p^{\prime}(x)=a_{1}+2 a_{2} x$ and $p^{\prime \prime}(x)=2 a_{2}$.
On the one hand, if $a_{2} \neq 0$, and $c_{1} p(x)+c_{2} p^{\prime}(x)+c_{3} p^{\prime \prime}(x)=0$, then $c_{1}=0$ since else there will be an x^{2} term in the sum coming from $p(x)$. But we then must also have $c_{2}=0$ since else there will be an x term coming from $p^{\prime}(x)$. And finally we then must also have $c_{3}=0$ since else there will be a constant term coming from $p(x)$.

On the other hand, if $a_{2}=0$, then $p^{\prime \prime}(x)=0$ and so we may take $c_{1}=c_{2}=0$ and $c_{3}=1$.

Name (Last, First): \qquad
2. Suppose $T: V \rightarrow W$ is an injective linear transformation of finite-dimensional vector spaces. Show there exists a linear transformation $S: W \rightarrow V$ such that the composition $S T: V \rightarrow V$ is the identity transformation.

Choose a basis v_{1}, \ldots, v_{n} of V.
Since T is injective, $T v_{1}, \ldots, T v_{n}$ is linearly independent. To see this, suppose $a_{1} T v_{1}+$ $\cdots+a_{n} T v_{n}=0$. Since T is linear, we then have $T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=0$. Since T is injective, this implies $a_{1} v_{1}+\cdots+a_{n} v_{n}=0$. Since v_{1}, \ldots, v_{n} is linearly independent, this implies $a_{1}=\cdots=a_{n}=0$.

Since $T v_{1}, \ldots, T v_{n}$ is linearly independent, we may extend it to a basis

$$
T v_{1}, \ldots, T v_{n}, w_{1}, \ldots, w_{k}
$$

Then we can define $S: W \rightarrow V$ by setting $S\left(T v_{i}\right)=v_{i}$ for $i=1, \ldots, n$, and $S\left(w_{j}\right)=0$, for $j=1, \ldots, k$. We have $S T\left(v_{i}\right)=v_{i}$ for $i=1, \ldots, n$, and hence $S T$ is the identity transformation.

Name (Last, First): \qquad
3. Let $P(\mathbb{C})$ be the complex vector space of polynomials with complex coefficients.

Consider the map $T: P(\mathbb{C}) \rightarrow \mathbb{C}$ that takes a polynomial $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ to the sum of the complex conjugates of its coefficients

$$
T(p(z))=\bar{a}_{0}+\bar{a}_{1}+\cdots+\bar{a}_{n}
$$

Is T linear? Be sure to justify your answer.
No, T is not linear since it does not preserve scaling:

$$
T(a p(z))=\bar{a} T(p(z))
$$

If we take $a=i$ for example, then $\bar{i}=-i$.

Name (Last, First): \qquad
4. Let V be a two-dimensional vector space. Suppose $T: V \rightarrow V$ is a linear transformation that is not a scalar multiple of the identity. Prove that there exists a vector $v \in V$ such that the pair of vectors $v, T v$ form a basis of V.

We have proved that if every nonzero vector of V is an eigenvector of T then T must be a scalar multiple of the identity. Thus there must exist $v \neq 0 \in V$ such that v is not an eigenvector. In other words, $T v$ is not a scalar multiple of v. Hence $v, T v$ must be linearly independent. Since V is two-dimensional, the fact that $v, T v$ are linearly independent implies thay also span.

Name (Last, First): \qquad
5. Decide if the following assertion is always true or sometimes false. If always true, provide a proof; if sometimes false, provide a counterexample and justify why it is a counterexample.

Assertion: Let V be a finite dimensional complex vector space, $T: V \rightarrow V$ a linear transformation, and $U \subset V$ a T-invariant subspace. Then there exists a T-invariant subspace $W \subset V$ such that $V=U \oplus W$.

It is false. For example, take $V=\mathbb{C}^{2}, U=\operatorname{span}((1,0))$, and

$$
T=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

If W is a T-invariant subspace, then W must be $\{0\}, U$, or V. To see this, suppose W is not $\{0\}$ or V, so that $W=\operatorname{span}((a, b))$ for some $a, b \in \mathbb{C}$. But $T((a, b))=(b, 0)$, so we must have $b=0$ and then $a=0$, a contradiction.

Name (Last, First): \qquad
6. Let V be a vector space of dimension 3 , and let W be a vector space of dimension 5 . Recall that $L(V, W)$ denotes the vector space of linear transformations from V to W.

Show that there cannot exist a linear transformation

$$
T: L(V, W) \rightarrow L(V, W)
$$

such that $\operatorname{dim} \operatorname{null}(T)=\operatorname{dim} \operatorname{range}(T)$.
We have $\operatorname{dim} L(V, W)=(\operatorname{dim} V)(\operatorname{dim} W)=3 \cdot 5=15$.
We also have $\operatorname{dim} L(V, W)=\operatorname{dim} \operatorname{null}(T)+\operatorname{dim} \operatorname{range}(T)$.
Since 15 is odd, we cannot have $\operatorname{dim} \operatorname{null}(T)=\operatorname{dim} \operatorname{range}(T)$.

