Name (Last, First): \qquad
Student ID: \qquad
Circle your GSI and section:

Scerbo	8 am	200 Wheeler	Forman	2 pm	3109 Etcheverry
Scerbo	9 am	3109 Etcheverry	Forman	4 pm	3105 Etcheverry
McIvor	12 pm	3107 Etcheverry	Melvin	5 pm	24 Wheeler
McIvor	11am	3102 Etcheverry	Melvin	4 pm	151 Barrows
Mannisto	12 pm	3 Evans	Mannisto	11am	3113 Etcheverry
Wayman	1 pm	179 Stanley	McIvor	2 pm	179 Stanley
Wayman	2 pm	81 Evans			

If none of the above, please explain: \qquad
This exam consists of 10 problems, each worth 10 points, of which you must complete 8 . Choose two problems not to be graded by crossing them out in the box below. You must justify every one of your answers unless otherwise directed.

Problem	Maximum Score	Your Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	80	
Total Possible	10	

Name (Last, First): \qquad

1. Let V be a nonzero finite-dimensional real vector space. Suppose $T: V \rightarrow V$ is a linear transformation.

Decide if the following assertions are ALWAYS TRUE or SOMETIMES FALSE. You need not justify your answer.
i. There exists an eigenvalue of T. F
ii. There exists a basis of V such that T is upper-triangular. F
iii. $\operatorname{dim} V=\operatorname{dim} \operatorname{null}(T)+\operatorname{dim} \operatorname{range}(T)$ T
iv. If v and w are colinear, then $T v$ and $T w$ are colinear. T
v. If v and w are linearly independent, then $T v$ and $T w$ are linearly independent. F
vi. If T is invertible and λ is an eigenvalue of T, then λ^{-1} is an eigenvalue of T^{-1}. T
vii. If T is invertible and v is an eigenvector of T, then v is an eigenvector of T^{-1}. T
viii. If $T^{2}=1$, then T has an eigenvalue. T
ix. If $T^{3}=T^{2}$, then T has an eigenvalue.

T
x. If $T^{3}=T^{2}$, then $\operatorname{null}(T) \neq\{0\}$.

F

Name (Last, First): \qquad
2. Let V be an inner product space and v_{1}, \ldots, v_{n} a list of vectors in V.
(a) State what it means for v_{1}, \ldots, v_{n} to be linearly independent. State what it means for v_{1}, \ldots, v_{n} to be orthonormal.
v_{1}, \ldots, v_{n} is linearly independent means whenever $a_{1} v_{1}+\cdots a_{n} v_{n}=0$ for scalars a_{1}, \ldots, a_{n}, we have that $a_{1}=\cdots=a_{n}=0$.
v_{1}, \ldots, v_{n} orthonormal means $\left\langle v_{i}, v_{j}\right\rangle$ is equal to 0 if $i \neq j$ and is equal to 1 when $i=j$.
(b) Prove that if v_{1}, \ldots, v_{n} is orthonormal, then v_{1}, \ldots, v_{n} is linearly independent.

Suppose $a_{1} v_{1}+\cdots a_{n} v_{n}=0$. Then for all $i=1, \ldots, n$, we have $0=\left\langle a_{1} v_{1}+\cdots a_{n} v_{n}, v_{i}\right\rangle=$ $a_{1}\left\langle v_{1}, v_{i}\right\rangle+\cdots a_{n}\left\langle v_{n}, v_{i}\right\rangle=a_{i}\left\langle v_{i}, v_{i}\right\rangle=a_{i}$. Thus we have that $a_{1}=\cdots=a_{n}=0$.

Name (Last, First): \qquad
3. Let $A \in M_{n \times n}(\mathbb{C})$ be a complex matrix. Consider the subspace $W \subset M_{n \times n}(\mathbb{C})$ given by

$$
W=\operatorname{span}\left\{I, A, A^{2}, A^{3}, \ldots, A^{k}, \ldots\right\}
$$

Prove that

$$
\operatorname{dim} W \leq n
$$

By the Cayley-Hamilton Theorem, we have $\chi_{A}(A)=0$ where $\chi_{A}(z)$ is the characteristic polynomial. Recall that $\chi_{A}(z)$ is monic of degree n, and thus A^{n} is in the span of I, A, \ldots, A^{n-1}. For any $k \geq 1$, we similarly have that A^{n+k} is in the span of $A^{k}, A^{k+1}, \ldots, A^{n+k}$. Thus by induction, we have that A^{n+k} is in the span of I, A, \ldots, A^{n-1}.

Name (Last, First): \qquad
4. Consider \mathbb{C}^{3} with the standard Euclidean inner product. Determine whether each of the following operators $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ is self-adjoint, normal, or neither. You need not justify your answer.
a. T has eigenvectors $(1,0,0),(0,1,0),(0,0,1)$ with respective eigenvalues $0,1+i, 1-i$. Normal but not self-adjoint.
b. T has eigenvectors $(1, i, 0),(1,-i, 0),(0,0,1)$ with respective eigenvalues $1,-1,0$. Self-adjoint.
c. T has eigenvectors $(1,0,0),(0, i,-i),(1,1,1)$ with respective eigenvalues $1,-1,1$. Self-adjoint.
d. $\operatorname{dim} \operatorname{null}\left(T^{2}\right)=3, \operatorname{dim} \operatorname{range}(T)=1$. Neither.
e. $\operatorname{dim} \operatorname{null}(T-i)=2, \operatorname{dim} \operatorname{null}(T)=1$ with $\operatorname{null}(T-i) \perp \operatorname{null}(T)$.

Normal but not self-adjoint.

Name (Last, First):
5. Find a basis for \mathbb{C}^{3} that puts the operator given by the matrix

$$
T=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

into Jordan canonical form. What is the Jordan canonical form?
Take $v_{1}=A v_{2}=(0,0,1), v_{2}=A v_{3}=(0,1,1), v_{3}=(1,0,0)$.
Jordan form:

$$
T=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Name (Last, First):
6. Consider \mathbb{R}^{2} with the inner product

$$
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=2 x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}
$$

a. Find an orthonormal basis for \mathbb{R}^{2} with respect to the above inner product.

Take $e_{1}=(0,1), e_{2}=(1,-1)$.
b. Find the vector $v=(a, b)$ closest to $(1,0)$ satisfying $a+b=0$.
$v=(1,-1)=\left\langle(1,0), e_{2}\right\rangle e_{2}$.

Name (Last, First): \qquad
7. Find the Jordan form of an operator $T: \mathbb{C}^{5} \rightarrow \mathbb{C}^{5}$ given the following information:
$\operatorname{dim} \operatorname{null}\left(T^{2}\right)=2 \quad \operatorname{dim} \operatorname{null}\left(T^{3}\right)=3 \quad \operatorname{dim} \operatorname{null}\left((T-1)^{2}\right)=2 \quad \operatorname{dim} \operatorname{range}(T-1)=4$
Be sure to justify your answer.
Jordan form:

$$
T=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Since $\operatorname{dim} \operatorname{null}\left(T^{3}\right)=3$, we have $\operatorname{dim} \tilde{E}_{0} \geq 3$. Since $\operatorname{dim} \operatorname{null}\left(\left(T-{\underset{\tilde{E}}{ }}_{1}^{1}\right)^{2}\right)=2$, we have $\operatorname{dim} \tilde{E}_{1} \geq 2$. Thus since $\operatorname{dim} \mathbb{C}^{5}=5$, we must have $\operatorname{dim} \tilde{E}_{0}=3$ and $\operatorname{dim} \tilde{E}_{1}=2$.

Next, since $\operatorname{dim} \operatorname{null}\left(T^{2}\right)=2$, we must have the Jordan block

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Since $\operatorname{dim} \operatorname{range}(T-1)=4$, we can not have $\operatorname{dim} \operatorname{null}(T-1)=2$, and so we must have the Jordan block

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Name (Last, First): \qquad
8. Consider the following matrices:

$$
\begin{gathered}
T_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & -1 \\
0 & 0 & 0
\end{array}\right) \quad T_{2}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad T_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right) \\
T_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad T_{5}=\left(\begin{array}{ccccc}
0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad T_{6}=\left(\begin{array}{ccccc}
0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0
\end{array}\right)
\end{gathered}
$$

Which of the matrices has minimal polynomial $m(z)=z^{3}+z$? Be sure to justify your answer.
T_{2}, T_{3}, T_{6}. They each satisfy $m(z)=z^{3}+z=z(z-i)(z+i)=0$ and have each eigenvalue so no factor can be removed.
$i,-i$ are not eigenvalues of T_{1}, T_{4}.
T_{5} has a Jordan block

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

which means its minimal polynomial must contain z^{2} as a factor.

Name (Last, First):
9. Consider the matrix

$$
T=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

Calculate T^{100} applied to the vector (3,2).
T has eigenvectors $(1,1),(1,-1)$ with respective eigenvalues 0,2 .
$(3,2)=\frac{5}{2}(1,1)+\frac{1}{2}(1,-1)$.
Thus $T^{100}(3,2)=T^{100}\left(\frac{5}{2}(1,1)+\frac{1}{2}(1,-1)\right)=T^{100}\left(\frac{1}{2}(1,-1)\right)=2^{99}(1,-1)$.

Name (Last, First): \qquad
10. Let V be a complex vector space of dimension n. Suppose $T: V \rightarrow V$ satisfies $T^{n}=0$ but $T^{n-1} \neq 0$. Show that there is a vector $v \in V$ such that the list $v, T v, T^{2} v, \ldots, T^{n-1} v$ is a basis.

Since $T^{n-1} \neq 0$, there exists a vector $v \in V$ such that $T^{n-1} v \neq 0$.
Suppose $a_{1} v+a_{2} T v+\cdots+a_{n} T^{n-1} v=0$. Apply T^{n-1} to obtain $a_{1} T^{n-1} v=0$. Thus $a_{1}=0$ and so $a_{2} T v+\cdots+a_{n} T^{n-1} v=0$.

Apply Apply T^{n-2} to obtain $a_{2} T^{n-1} v=0$. Thus $a_{2}=0$ and so $a_{3} T^{2} v+\cdots+a_{n} T^{n-1} v=0$.
Keep repeating to conclude $a_{1}=\cdots=a_{n}=0$.
Thus $v, T v, T^{2} v, \ldots, T^{n-1} v$ is linearly independent. Since it has size $n=\operatorname{dim} V$, it also must span and hence be a basis.

