Name (Last, First):								
Student ID:								
Circle your GSI and section:								
	Scerbo	8am	200 Wheeler	Forman	$2 \mathrm{pm}$	3109 Etcheverry		
	Scerbo	9am	3109 Etcheverry	Forman	4pm	3105 Etcheverry		
	McIvor	$12 \mathrm{pm}$	3107 Etcheverry	Melvin	$5 \mathrm{pm}$	24 Wheeler		
	McIvor	11am	3102 Etcheverry	Melvin	$4 \mathrm{pm}$	151 Barrows		
	Mannisto	$12 \mathrm{pm}$	3 Evans	Mannisto	11am	3113 Etcheverry		
	Wayman	$1 \mathrm{pm}$	179 Stanley	McIvor	$2 \mathrm{pm}$	179 Stanley		
	Wayman	$2 \mathrm{pm}$	81 Evans					
If none of the above, please explain:								

This exam consists of 10 problems, each worth 10 points, of which you must complete 8. Choose two problems not to be graded by crossing them out in the box below. You must justify every one of your answers unless otherwise directed.

Problem	Maximum Score	Your Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total Possible	80	

Name (Last, First): _____

1. Let V be a nonzero finite-dimensional real vector space. Suppose $T:V\to V$ is a linear transformation.

Decide if the following assertions are ALWAYS TRUE or SOMETIMES FALSE. You need not justify your answer.

i. There exists an eigenvalue of T.

ii. There exists a basis of V such that T is upper-triangular.

iii. dim $V = \dim null(T) + \dim range(T)$

iv. If v and w are collinear, then Tv and Tw are collinear.

v. If v and w are linearly independent, then Tv and Tw are linearly independent.

vi. If T is invertible and λ is an eigenvalue of T, then λ^{-1} is an eigenvalue of T^{-1} .

vii. If T is invertible and v is an eigenvector of T, then v is an eigenvector of T^{-1} .

viii. If $T^2 = 1$, then T has an eigenvalue.

ix. If $T^3 = T^2$, then T has an eigenvalue.

x. If $T^3 = T^2$, then $null(T) \neq \{0\}$.

2. Let V be an inner product space and v_1, \ldots, v_n a list of vectors in V.

(a) State what it means for v_1, \ldots, v_n to be linearly independent. State what it means for v_1, \ldots, v_n to be orthonormal.

(b) Prove that if v_1, \ldots, v_n is orthonormal, then v_1, \ldots, v_n is linearly independent.

3. Let $A \in M_{n \times n}(\mathbb{C})$ be a complex matrix. Consider the subspace $W \subset M_{n \times n}(\mathbb{C})$ given by

$$W = span\{I, A, A^2, A^3, \dots, A^k, \dots\}$$

Prove that

 $\dim W \le n.$

4. Consider \mathbb{C}^3 with the standard Euclidean inner product. Determine whether each of the following operators $T : \mathbb{C}^3 \to \mathbb{C}^3$ is self-adjoint, normal, or neither. You need not justify your answer.

a. T has eigenvectors (1, 0, 0), (0, 1, 0), (0, 0, 1) with respective eigenvalues 0, 1 + i, 1 - i.

b. T has eigenvectors (1, i, 0), (1, -i, 0), (0, 0, 1) with respective eigenvalues 1, -1, 0.

c. T has eigenvectors (1, 0, 0), (0, i, -i), (1, 1, 1) with respective eigenvalues 1, -1, 1.

d. dim $null(T^2) = 3$, dim range(T) = 1.

e. dim null(T-i) = 2, dim null(T) = 1 with $null(T-i) \perp null(T)$.

5. Find a basis for \mathbb{C}^3 that puts the operator given by the matrix

$$T = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}\right)$$

into Jordan canonical form. What is the Jordan canonical form?

Name (Last, First): _____

6. Consider \mathbb{R}^2 with the inner product

 $\langle (x_1, x_2), (y_1, y_2) \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$

a. Find an orthonormal basis for \mathbb{R}^2 with respect to the above inner product.

b. Find the vector v = (a, b) closest to (1, 0) satisfying a + b = 0.

7. Find the Jordan form of an operator $T: \mathbb{C}^5 \to \mathbb{C}^5$ given the following information:

 $\dim null(T^2) = 2$ $\dim null(T^3) = 3$ $\dim null((T-1)^2) = 2$ $\dim range(T-1) = 4$

Be sure to justify your answer.

Name (Last, First): _____

8. Consider the following matrices:

Which of the matrices has minimal polynomial $m(z) = z^3 + z$? Be sure to justify your answer.

Name (Last, First):

9. Consider the matrix

$$T = \left(\begin{array}{rr} 1 & -1 \\ -1 & 1 \end{array}\right)$$

Calculate T^{100} applied to the vector (3, 2).

10. Let V be a complex vector space of dimension n. Suppose $T: V \to V$ satisfies $T^n = 0$ but $T^{n-1} \neq 0$. Show that there is a vector $v \in V$ such that the list $v, Tv, T^2v, \ldots, T^{n-1}v$ is a basis.