Name (Last, First): \qquad
Student ID: \qquad
Circle your GSI and section:

Scerbo	8 am	200 Wheeler
Scerbo	9 am	3109 Etcheverry
McIvor	12 pm	3107 Etcheverry
McIvor	11 am	3102 Etcheverry
Mannisto	12 pm	3 Evans
Wayman	1 pm	179 Stanley
Wayman	2 pm	81 Evans
Forman	2 pm	3109 Etcheverry
Forman	4 pm	3105 Etcheverry
Melvin	5 pm	24 Wheeler
Melvin	4 pm	151 Barrows
Mannisto	11 am	3113 Etcheverry
McIvor	2 pm	179 Stanley

If none of the above, please explain: \qquad
This is a closed book exam, no notes allowed. It consists of 6 problems, each worth 10 points, of which you must complete 5 . Choose one problem not to be graded by crossing it out in the box below. You must justify every one of your answers unless otherwise directed.

Problem	Maximum Score	Your Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total Possible	50	

1. Let $P_{\leq 2}(\mathbb{R})$ denote the real vector space of polynomials of degree less than or equal to two. Consider the linear transformation $T: P_{\leq 2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ given by

$$
T(p(x))=\binom{p(-1)}{p(1)}
$$

a. What is the matrix of T with respect to the basis $1, x, x^{2}$ of $P_{\leq 2}(\mathbb{R})$ and the standard basis of \mathbb{R}^{2} ?
b. Find the dimension of the subspace $U \subset P_{\leq 2}(\mathbb{R})$ of polynomials with $p(-1)=p(1)=0$. Be sure to justify your answer.

Name (Last, First): \qquad
2. Let v_{1}, \ldots, v_{n} be a linearly independent list of vectors of V, and let u_{1}, u_{2} be another linearly independent list of vectors of V. Suppose that u_{1} and u_{2} are each not in $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$.

Decide if the following assertion is always true or sometimes false. If always true, provide a proof; if sometimes false, provide a counterexample and justify why it is a counterexample.

Assertion: the list $v_{1}, \ldots, v_{n}, u_{1}, u_{2}$ is linearly independent.

Name (Last, First): \qquad
3. Let V be a vector space and $U \subset V$ a subspace with $\operatorname{dim} V=n$ and $\operatorname{dim} U=k$.

Let $L \subset L(V, V)$ be the subset of linear transformations $T: V \rightarrow V$ such that U is T-invariant.
a. Check that L is a subspace.
b. Calculate $\operatorname{dim} L$.

Name (Last, First): \qquad
4. Let V be a finite-dimensional nonzero complex vector space. For each of the following, decide if it is possible for a linear transformation $T: V \rightarrow V$ to satisfy the stated requirements. If yes, give an example; if no, justify why not.
a. T is injective but not surjective.
b. $\operatorname{null}(T)=\operatorname{range}(T)$.
c. For any basis of V, the corresponding matrix of T is diagonal.
d. There exists a linear transformation $S: V \rightarrow V$ such that $S T=\mathrm{Id}_{V}$ and $T S=0$.

Name (Last, First): \qquad
5. Let V be a two-dimensional complex vector space, and $T: V \rightarrow V$ a linear transformation satisfying $T^{4}=-T^{2}$.
a. What are the three possible eigenvalues of T ?
b. Is it possible for one such linear transformation T to have all three possible eigenvalues? Be sure to justify your answer.

Name (Last, First):
6. Consider a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$. Prove that if $\operatorname{null}(T) \cap \operatorname{range}(T)=\{0\}$ and $\operatorname{dim} \operatorname{range}(T)=3$, then T has at least 2 distinct eigenvalues.

