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6-9 Using the angle addition formulas for sine and cosine, we get the following relations, for any
integers m and n:

sin(mx) cos(nx) =
1

2

(
sin(m− n)x+ sin(m+ n)x)

)
sin(mx) sin(nx) =

1

2

(
cos(m− n)x− cos(m+ n)x)

)
cos(mx) cos(nx) =

1

2

(
cos(m− n)x+ cos(m+ n)x)

)
.

The integral of cos(kx) or sin(kx) is 0 when integrated over a full period [−π, π], so this means that∫ π

−π
sin(mx) cos(nx) = 0 for any m,n∫ π

−π
sin(mx) sin(nx) = 0 for m 6= n∫ π

−π
cos(mx) cos(nx) = 0 for m 6= n.

The only remaining case is when m = n, and then we get∫ π

−π
sin(mx) sin(nx) =

∫ π

−π

1

2
= π,∫ π

−π
cos(mx)cos(mx) =

∫ π

−π

1

2
= π.

6-10 First we find an orthogonal basis {b1, b2, b3}. We set b1 = 1. Then we set

b2 = x− 〈x, b1〉
〈b1, b1〉

b1 = x− 1/2,

b3 = x2 − 〈x
2, b2〉
〈b2, b2〉

b2 −
〈x2, b1〉
〈b1, b1〉

b1 = x2 − (x− 1

2
)− 1

3
.

Normalizing, we get

e1 = 1,

e2 =
1√
12

(
x− 1/2

)
e3 =

√
180

61

(
x2 − x+ 1/6

)
.

6-11 If vn is in Span(v1, ..., vn−1) and v1, ..., vn−1 are linearly independent, then applying the Gram-
Schmidt procedure will give orthonormal vectors e1, ..., en−1 but spit out en = 0.

6-12 We prove it by induction on m. In case m = 1, Span(v1) is one-dimensional and there are
exactly two vectors with unit norm, namely ±e1 where e1 is a vector of unit norm. Now sup-
pose we have found that there are 2m−1 orthonormal lists with Span(v1, ..., vj) = Span(e1, ...ej) for
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j ≤ m− 1. Let U = Span(v1, ..., vm−1). To obtain an orthonormal basis for V , we must start with
an orthonormal basis for U and then extend it to a basis for V . The last basis vector must be in
U⊥, which is 1-dimensional. As explained above there are two vectors of unit norm in U⊥. We see
that for each choice of basis for U , there are exactly two ways to complete this basis to a basis of
V with the desired property. Therefore there are 2m possible choices for bases as we wanted to show.

6-13 Extend (e1, ..., em) to an orthonormal basis (e1, ..., en) of V . Then we have v = 〈v, e1〉e1 +
... + 〈v, en〉en. The vector v lies in Span(e1, ..., em) if and only if 〈v, ei〉 = 0 for m < i ≤ n. By the
pythagorean theorem, this happens if and only if ||v||2 = |〈v, e1〉|2 + ...+ |〈v, em〉|2.

6-14 Notice that the differentiation operator has an upper triangular matrix with respect to the
standard basis {1, x, x2}. Therefore it also has an upper-triangular matrix with respect to the basis
obtained from Gram-Schmidt applied to {1, x, x2}; see the proof of Corollary 6.27. We computed
this basis in Problem 10.

6-15 Use the Rank-Nullity theorem and Theorem 6.29.

6-16 Obvious from Problem 6-15.

6-17 In Problem 5-21, we showed that if P 2 = P , then V = Null(P ) ⊕ Range(P ). There-
fore, the action of P is always as follows: for v ∈ V , write v = u + w, for w ∈ Null(P ) and
u ∈ Range(P ). Then P (v) = u. For P to be an orthogonal projection, then, is equivalent to saying
that Null(P ) = Range(P )⊥, which is exactly the problem statement.

6-18 Again, we know that P is the projection onto Range(P ) with kernel Null(P ), by Problem 5-21.
We have to show that the condition in the problem statement implies that Null(P ) = Range(P )⊥.
Suppose to the contrary that we have vectors v ∈ Null(P ), w ∈ Range(P ), with 〈v, w〉 6= 0. Ac-
cording to Problem 6-2, there exists a scalar a ∈ F such that ||w|| > ||w + av||. Applying P on the
right-hand side, notice that P (w + av) = P (w) = w. Therefore u = w + av is a vector with the
property that ||P (u)|| > ||u||, contradicting the problem statement.

6-19 First suppose that U is invariant under T , so that T (U) ⊆ U . Write P for PU to ease
notation. For any v ∈ V , we want to show that PTP (v) = TP (v). Well, P (v) ∈ U by definition,
so TP (v) ∈ U by assumption. But P is the identity when restriction to U since it’s a projection, so
PTP (v) = TP (v).

Conversely, suppose that PTP (v) = TP (v) for all v ∈ V . Now take any u ∈ U . Then P (u) = u,
so by assumption, PT (u) = T (u). But for any vector v ∈ V , P (v) = v if and only if v ∈ V (since
P is a projection operator), so the equation PT (u) = T (u) implies tha T (u) ∈ U , so U is T -invariant.

6-20 First suppose that U and U⊥ are both invariant under T . Now take any vector v ∈ V ; we
want to show that PT (v) = TP (v) (writing P for PU again). Write v = u + w with u ∈ U and
w ∈ U⊥. Then P (v) = u, and so TP (v) = T (u). On the other hand, T (u+w) = T (u) + T (w) with
T (u) ∈ U and T (w) ∈ U⊥ by assumption, so PT (u+ w) = PT (u) + PT (w) = T (u), since P is the
identity on U and is the zero map on U⊥. Therefore PT (v) = TP (v) as we needed to show.

Conversely, suppose that PT (v) = TP (v) for all v ∈ V . We need to show that U and U⊥ are both
T -invariant. First we show that U is T -invariant, so let u ∈ U . Then P (u) = u, so TP (u) = T (u).
On the other hand PT (u) = T (u) if and only if T (u) ∈ U since P is the projection onto U . Therefore
U is T -invariant.
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Next we show that U⊥ is T -invariant. Take any w ∈ U⊥. Then P (w) = 0, and therefore
TP (w) = PT (w) = 0. But for any vector v ∈ V , Pv = 0 if and only if v ∈ U⊥, so the equation
PT (w) = 0 implies that T (w) ∈ U⊥, and therefore U⊥ is T -invariant.


