MATH 110 HOMEWORK 9 SOLUTIONS

6-9 Using the angle addition formulas for sine and cosine, we get the following relations, for any integers m and n :

$$
\begin{aligned}
\sin (m x) \cos (n x) & \left.=\frac{1}{2}(\sin (m-n) x+\sin (m+n) x)\right) \\
\sin (m x) \sin (n x) & \left.=\frac{1}{2}(\cos (m-n) x-\cos (m+n) x)\right) \\
\cos (m x) \cos (n x) & \left.=\frac{1}{2}(\cos (m-n) x+\cos (m+n) x)\right)
\end{aligned}
$$

The integral of $\cos (k x)$ or $\sin (k x)$ is 0 when integrated over a full period $[-\pi, \pi]$, so this means that

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin (m x) \cos (n x)=0 \text { for any } m, n \\
& \int_{-\pi}^{\pi} \sin (m x) \sin (n x)=0 \text { for } m \neq n \\
& \int_{-\pi}^{\pi} \cos (m x) \cos (n x)=0 \text { for } m \neq n
\end{aligned}
$$

The only remaining case is when $m=n$, and then we get

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin (m x) \sin (n x) & =\int_{-\pi}^{\pi} \frac{1}{2}=\pi \\
\int_{-\pi}^{\pi} \cos (m x) \cos (m x) & =\int_{-\pi}^{\pi} \frac{1}{2}=\pi
\end{aligned}
$$

6-10 First we find an orthogonal basis $\left\{b_{1}, b_{2}, b_{3}\right\}$. We set $b_{1}=1$. Then we set

$$
\begin{aligned}
& b_{2}=x-\frac{\left\langle x, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}=x-1 / 2 \\
& b_{3}=x^{2}-\frac{\left\langle x^{2}, b_{2}\right\rangle}{\left\langle b_{2}, b_{2}\right\rangle} b_{2}-\frac{\left\langle x^{2}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}=x^{2}-\left(x-\frac{1}{2}\right)-\frac{1}{3}
\end{aligned}
$$

Normalizing, we get

$$
\begin{aligned}
e_{1} & =1 \\
e_{2} & =\frac{1}{\sqrt{12}}(x-1 / 2) \\
e_{3} & =\sqrt{\frac{180}{61}}\left(x^{2}-x+1 / 6\right)
\end{aligned}
$$

6-11 If v_{n} is in $\operatorname{Span}\left(v_{1}, \ldots, v_{n-1}\right)$ and v_{1}, \ldots, v_{n-1} are linearly independent, then applying the GramSchmidt procedure will give orthonormal vectors e_{1}, \ldots, e_{n-1} but spit out $e_{n}=0$.

6-12 We prove it by induction on m. In case $m=1, \operatorname{Span}\left(v_{1}\right)$ is one-dimensional and there are exactly two vectors with unit norm, namely $\pm e_{1}$ where e_{1} is a vector of unit norm. Now suppose we have found that there are 2^{m-1} orthonormal lists with $\operatorname{Span}\left(v_{1}, \ldots, v_{j}\right)=\operatorname{Span}\left(e_{1}, \ldots e_{j}\right)$ for
$j \leq m-1$. Let $U=\operatorname{Span}\left(v_{1}, \ldots, v_{m-1}\right)$. To obtain an orthonormal basis for V, we must start with an orthonormal basis for U and then extend it to a basis for V. The last basis vector must be in U^{\perp}, which is 1-dimensional. As explained above there are two vectors of unit norm in U^{\perp}. We see that for each choice of basis for U, there are exactly two ways to complete this basis to a basis of V with the desired property. Therefore there are 2^{m} possible choices for bases as we wanted to show.

6-13 Extend $\left(e_{1}, \ldots, e_{m}\right)$ to an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of V. Then we have $v=\left\langle v, e_{1}\right\rangle e_{1}+$ $\ldots+\left\langle v, e_{n}\right\rangle e_{n}$. The vector v lies in $\operatorname{Span}\left(e_{1}, \ldots, e_{m}\right)$ if and only if $\left\langle v, e_{i}\right\rangle=0$ for $m<i \leq n$. By the pythagorean theorem, this happens if and only if $\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}$.

6-14 Notice that the differentiation operator has an upper triangular matrix with respect to the standard basis $\left\{1, x, x^{2}\right\}$. Therefore it also has an upper-triangular matrix with respect to the basis obtained from Gram-Schmidt applied to $\left\{1, x, x^{2}\right\}$; see the proof of Corollary 6.27. We computed this basis in Problem 10.

6-15 Use the Rank-Nullity theorem and Theorem 6.29.
6-16 Obvious from Problem 6-15.
6-17 In Problem 5-21, we showed that if $P^{2}=P$, then $V=\operatorname{Null}(P) \oplus \operatorname{Range}(P)$. Therefore, the action of P is always as follows: for $v \in V$, write $v=u+w$, for $w \in \operatorname{Null}(P)$ and $u \in \operatorname{Range}(P)$. Then $P(v)=u$. For P to be an orthogonal projection, then, is equivalent to saying that $\operatorname{Null}(P)=\operatorname{Range}(P)^{\perp}$, which is exactly the problem statement.

6-18 Again, we know that P is the projection onto Range (P) with kernel Null((P), by Problem 5-21. We have to show that the condition in the problem statement implies that $\operatorname{Null}(P)=\operatorname{Range}(P)^{\perp}$. Suppose to the contrary that we have vectors $v \in \operatorname{Null}(P), w \in \operatorname{Range}(P)$, with $\langle v, w\rangle \neq 0$. According to Problem 6-2, there exists a scalar $a \in F$ such that $\|w\|>\|w+a v\|$. Applying P on the right-hand side, notice that $P(w+a v)=P(w)=w$. Therefore $u=w+a v$ is a vector with the property that $\|P(u)\|>\|u\|$, contradicting the problem statement.

6-19 First suppose that U is invariant under T, so that $T(U) \subseteq U$. Write P for P_{U} to ease notation. For any $v \in V$, we want to show that $P T P(v)=T P(v)$. Well, $P(v) \in U$ by definition, so $T P(v) \in U$ by assumption. But P is the identity when restriction to U since it's a projection, so $P T P(v)=T P(v)$.

Conversely, suppose that $P T P(v)=T P(v)$ for all $v \in V$. Now take any $u \in U$. Then $P(u)=u$, so by assumption, $P T(u)=T(u)$. But for any vector $v \in V, P(v)=v$ if and only if $v \in V$ (since P is a projection operator), so the equation $P T(u)=T(u)$ implies tha $T(u) \in U$, so U is T-invariant.

6-20 First suppose that U and U^{\perp} are both invariant under T. Now take any vector $v \in V$; we want to show that $P T(v)=T P(v)$ (writing P for P_{U} again). Write $v=u+w$ with $u \in U$ and $w \in U^{\perp}$. Then $P(v)=u$, and so $T P(v)=T(u)$. On the other hand, $T(u+w)=T(u)+T(w)$ with $T(u) \in U$ and $T(w) \in U^{\perp}$ by assumption, so $P T(u+w)=P T(u)+P T(w)=T(u)$, since P is the identity on U and is the zero map on U^{\perp}. Therefore $P T(v)=T P(v)$ as we needed to show.

Conversely, suppose that $P T(v)=T P(v)$ for all $v \in V$. We need to show that U and U^{\perp} are both T-invariant. First we show that U is T-invariant, so let $u \in U$. Then $P(u)=u$, so $T P(u)=T(u)$. On the other hand $P T(u)=T(u)$ if and only if $T(u) \in U$ since P is the projection onto U. Therefore U is T-invariant.

Next we show that U^{\perp} is T-invariant. Take any $w \in U^{\perp}$. Then $P(w)=0$, and therefore $T P(w)=P T(w)=0$. But for any vector $v \in V, P v=0$ if and only if $v \in U^{\perp}$, so the equation $P T(w)=0$ implies that $T(w) \in U^{\perp}$, and therefore U^{\perp} is T-invariant.

