Solutions to Homework \#7.
Chapter 5.
13. To make things concrete, let's choose a basis v_{1}, \ldots, v_{n} of V so that T is represented by a matrix $[T]$ with entries denoted $T_{i j}$.

Consider the subspace $W=\operatorname{span}\left(v_{2}, \ldots, v_{n}\right) \subset V$ and note $\operatorname{dim} W=n-1$. Thus W is T invariant by assumption. Thus for any $i=2, \ldots, n$, we have $T v_{i} \in W$ and so we have $T_{i 1}=0$. In other words the first row of $[T]$ is all zeros except for possibly T_{11}.

Next take $W=\operatorname{span}\left(v_{1}, v_{3}, \ldots, v_{n}\right) \subset V$ and note $\operatorname{dim} W=n-1$. Thus W is T-invariant by assumption. Thus for any $i=1,3, \ldots, n$, we have $T v_{i} \in W$ and so we have $T_{i 2}=0$. In other words the second row of $[T]$ is all zeros except for possibly T_{22}.

Continuing in this way we see that $[T]$ must be diagonal.
Now choose $W=\operatorname{span}\left(v_{1}+v_{2}, v_{3}, \ldots, v_{n}\right) \subset V$ and note $\operatorname{dim} W=n-1$ since the $n-1$ vectors $v_{1}+v_{2}, v_{3}, \ldots, v_{n}$ are linearly independent. Thus W is T-invariant by assumption. Thus $T\left(v_{1}+v_{2}\right)=T_{11} v_{1}+T_{22} v_{2} \in W$ which implies $T_{11} v_{1}+T_{22} v_{2}=a\left(v_{1}+v_{2}\right)$ for some $a \in F$. Hence $\left(T_{11}-a\right) v_{1}+\left(T_{22}-a\right) v_{2}=0$ and by linear independence we see $a=T_{11}=T_{22}$.

Next choose $W=\operatorname{span}\left(v_{1}, v_{2}+v_{3}, v_{4}, \ldots, v_{n}\right) \subset V$ and note $\operatorname{dim} W=n-1$ since the $n-1$ vectors $v_{1}, v_{2}+v_{3}, v_{4}, \ldots, v_{n}$ are linearly independent. Thus W is T-invariant by assumption. Thus $T\left(v_{2}+v_{3}\right)=T_{22} v_{2}+T_{33} v_{2} \in W$ which implies $T_{22} v_{1}+T_{33} v_{2}=a\left(v_{1}+v_{2}\right)$ for some $a \in F$. Hence $\left(T_{22}-a\right) v_{1}+\left(T_{33}-a\right) v_{2}=0$ and by linear independence we see $a=T_{22}=T_{33}$.

Continuing in this way we see that $[T]$ must be of the form $a \operatorname{Id}_{V}$.
14. If $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$, then $p\left(S T S^{-1}\right)=a_{0}+a_{1}\left(S T S^{-1}\right)+\cdots+a_{n}\left(S T S^{-1}\right)^{n}=$ $a_{0}+a_{1}\left(S T S^{-1}\right)+\cdots+a_{n}\left(S T^{n} S^{-1}\right)=S\left(a_{0}+a_{1} T+\cdots+a_{n} T^{n}\right) S^{-1}=S p(T) S^{-1}$.
15. Choose a basis of V so that $[T]$ is upper triangular. We know that its eigenvalues are its diagonal entries λ_{i}. Then with respect to the same basis, we see that $[p(T)]$ will also be upper triangular with diagonal entries $p\left(\lambda_{i}\right)$. Thus a is an eigenvalue of $p(T)$ if and only if $a=p(\lambda)$ for some eigenvalue λ of T.
16. Counterexample: take $V=\mathbb{R}^{2}$,

$$
T=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

and $p(z)=z^{2}$. Then T has no eigenvalues but $p(T)=T^{2}=-\operatorname{Id}_{V}$ has eigenvalue -1 .
17. Choose basis v_{1}, \ldots, v_{n} of V such that $[T]$ is upper triangular. Then we have proved (see Proposition 5.12) that $V_{j}=\operatorname{span}\left(v_{1}, \ldots, v_{j}\right)$ is T-invariant and clearly $\operatorname{dim} V_{j}=j$.
18. Take $V=\mathbb{R}^{2}$ and

$$
T=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Then T is invertible with $T^{-1}=-T$.
19. Take $V=\mathbb{R}^{2}$ and

$$
T=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Then T is not invertible since null T contains $(1,-1)$.
20. Let $n=\operatorname{dim} V$. Since T has n distinct eigenvalues, there is a linearly independent set v_{1}, \ldots, v_{n} of eigenvectors and hence a basis. Thus [T] becomes diagonal but so does $[S]$. Thus $S T=T S$.
21. Take $v \in V$. Consider $w=v-P v$. Then $P w=P v=P^{2} v=0$ so $w \in$ null P. Writing $v=w+P v$ we see $V=$ null $P+$ range P. Thus it suffices to see null $P \cap \operatorname{range} P=\{0\}$. Take $u \in \operatorname{null} P$ and $P v \in \operatorname{range} P$ and suppose $w=P v$. Then $0=P w=P^{2} v=P v=w$. So we see w and $P v$ are 0 as desired.
22. Any $u \in U$ satisfies $P_{U, W} u=u$ and hence if $u \neq 0$, it is an eigenvector of eigenvalue 1 .

Any $w \in W$ satisfies $P_{U, W} w=0$ and hence if $w \neq 0$, it is an eigenvector of eigenvalue 0 .
If any other vector $v=u+w \neq 0$ satisfies $P(u+w)=a(u+w)$ then we have $u=P(u+w)=$ $a(u+w)$ so either $w=0$ and $a=1$, or $a=0$ and $u=0$.
23. Take

$$
T=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Then $T^{2}=-\mathrm{Id}$. Thus if $T v=a v$, with $v \neq 0, a \in \mathbb{R}$, then $-v=-\mathrm{Id} v=T^{2} v=a T v=a^{2} v$, and so $a^{2}=-1$, a contradiction.
24. This follows from Theorem 5.26. Namely, if there is a T-invariant subspace $W \subset V$ of odd dimension then W contains an eigenvector of T. And we can also regard this eigenvector as an eigenvector in V, a contradiction.

