Solutions to Homework #7.

Chapter 5.

13. To make things concrete, let's choose a basis v_1, \ldots, v_n of V so that T is represented by a matrix [T] with entries denoted T_{ij} .

Consider the subspace $W = span(v_2, \ldots, v_n) \subset V$ and note dim W = n - 1. Thus W is T-invariant by assumption. Thus for any $i = 2, \ldots, n$, we have $Tv_i \in W$ and so we have $T_{i1} = 0$. In other words the first row of [T] is all zeros except for possibly T_{11} .

Next take $W = span(v_1, v_3, \ldots, v_n) \subset V$ and note dim W = n - 1. Thus W is T-invariant by assumption. Thus for any $i = 1, 3, \ldots, n$, we have $Tv_i \in W$ and so we have $T_{i2} = 0$. In other words the second row of [T] is all zeros except for possibly T_{22} .

Continuing in this way we see that [T] must be diagonal.

Now choose $W = span(v_1 + v_2, v_3, \ldots, v_n) \subset V$ and note dim W = n - 1 since the n - 1 vectors $v_1 + v_2, v_3, \ldots, v_n$ are linearly independent. Thus W is T-invariant by assumption. Thus $T(v_1 + v_2) = T_{11}v_1 + T_{22}v_2 \in W$ which implies $T_{11}v_1 + T_{22}v_2 = a(v_1 + v_2)$ for some $a \in F$. Hence $(T_{11} - a)v_1 + (T_{22} - a)v_2 = 0$ and by linear independence we see $a = T_{11} = T_{22}$.

Next choose $W = span(v_1, v_2 + v_3, v_4, \ldots, v_n) \subset V$ and note dim W = n - 1 since the n - 1 vectors $v_1, v_2 + v_3, v_4, \ldots, v_n$ are linearly independent. Thus W is T-invariant by assumption. Thus $T(v_2 + v_3) = T_{22}v_2 + T_{33}v_2 \in W$ which implies $T_{22}v_1 + T_{33}v_2 = a(v_1 + v_2)$ for some $a \in F$. Hence $(T_{22} - a)v_1 + (T_{33} - a)v_2 = 0$ and by linear independence we see $a = T_{22} = T_{33}$.

Continuing in this way we see that [T] must be of the form $a \operatorname{Id}_V$.

14. If
$$p(z) = a_0 + a_1 z + \dots + a_n z^n$$
, then $p(STS^{-1}) = a_0 + a_1(STS^{-1}) + \dots + a_n(STS^{-1})^n = a_0 + a_1(STS^{-1}) + \dots + a_n(ST^nS^{-1}) = S(a_0 + a_1T + \dots + a_nT^n)S^{-1} = Sp(T)S^{-1}.$

15. Choose a basis of V so that [T] is upper triangular. We know that its eigenvalues are its diagonal entries λ_i . Then with respect to the same basis, we see that [p(T)] will also be upper triangular with diagonal entries $p(\lambda_i)$. Thus a is an eigenvalue of p(T) if and only if $a = p(\lambda)$ for some eigenvalue λ of T.

16. Counterexample: take $V = \mathbb{R}^2$,

$$T = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

and $p(z) = z^2$. Then T has no eigenvalues but $p(T) = T^2 = -\operatorname{Id}_V$ has eigenvalue -1.

17. Choose basis v_1, \ldots, v_n of V such that [T] is upper triangular. Then we have proved (see Proposition 5.12) that $V_j = span(v_1, \ldots, v_j)$ is T-invariant and clearly dim $V_j = j$.

18. Take $V = \mathbb{R}^2$ and

$$T = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

Then T is invertible with $T^{-1} = -T$.

19. Take $V = \mathbb{R}^2$ and

$$T = \left[\begin{array}{rr} 1 & 1 \\ 1 & 1 \end{array} \right]$$

Then T is not invertible since null T contains (1, -1).

20. Let $n = \dim V$. Since T has n distinct eigenvalues, there is a linearly independent set v_1, \ldots, v_n of eigenvectors and hence a basis. Thus [T] becomes diagonal but so does [S]. Thus ST = TS.

21. Take $v \in V$. Consider w = v - Pv. Then $Pw = Pv = P^2v = 0$ so $w \in null P$. Writing v = w + Pv we see V = null P + range P. Thus it suffices to see $null P \cap range P = \{0\}$. Take $u \in null P$ and $Pv \in range P$ and suppose w = Pv. Then $0 = Pw = P^2v = Pv = w$. So we see w and Pv are 0 as desired.

22. Any $u \in U$ satisfies $P_{U,W}u = u$ and hence if $u \neq 0$, it is an eigenvector of eigenvalue 1. Any $w \in W$ satisfies $P_{U,W}w = 0$ and hence if $w \neq 0$, it is an eigenvector of eigenvalue 0.

If any other vector $v = u + w \neq 0$ satisfies P(u + w) = a(u + w) then we have u = P(u + w) = a(u + w) so either w = 0 and a = 1, or a = 0 and u = 0.

23. Take

$$T = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Then $T^2 = -\text{Id.}$ Thus if Tv = av, with $v \neq 0$, $a \in \mathbb{R}$, then $-v = -\text{Id} v = T^2v = aTv = a^2v$, and so $a^2 = -1$, a contradiction.

24. This follows from Theorem 5.26. Namely, if there is a *T*-invariant subspace $W \subset V$ of odd dimension then W contains an eigenvector of T. And we can also regard this eigenvector as an eigenvector in V, a contradiction.