
Homework 6 Solutions

1. Suppose u ∈ U1 + · · ·+Um. Then for i = 1, . . . ,m, ∃ui ∈ Ui such that u = u1 + · · ·+um.
Thus, Tu = Tu1 + . . . Tum, and by the T -invariance of Ui, Tui ∈ Ui for i = 1, . . .m.
Therefore, Tu ∈ U1 + · · ·+ Um and so U1 + · · ·+ Um is T -invariant.

2. Suppose {Ux}x∈Γ is a collection of T -invariant subspaces. If u ∈ ∩x∈ΓUx, then u ∈ Ux
for all x ∈ Γ. By T -invariance of Ux, Tu ∈ Ux for all x ∈ Γ. Therefore, Tu ∈ ∩x∈ΓUx,
and so ∩x∈ΓUx is T -invariant.

3. Claim: If U is a subspace of V invariant under all T ∈ L(V ) then U = {0} or U = V.
proof: We will prove the contrapositive. Assume U 6= {0}, V . We will find a T ∈ L(V )
such that U is not T -invariant. Choose x ∈ U \ {0} and y /∈ U . By the basis extension
theorem, we can find a basis {x, b1, . . . , bn} of V . Then define T by T (x) = y and
T (bi) = 0 for i = 1, . . . n and extend by linearity. Then T ∈ L(V ) and T maps u ∈ U
to an element outside of U . Therefore, U is not invariant under T .

4. . Suppose S, T ∈ L(V ), and that ST = TS. Let v ∈ null(T − λI). Then

(T − λI)(Sv) = TSv − λSv = STv − λSv = S(Tv − λv) = 0.

Thus, Sv ∈ null(T − λI). Therefore, null(T − λI) is S-invariant.

5. Define T ∈ L(F 2) by T (w, z) = (z, w). If λ is an eigenvalue of T , then for some
nonzero (w, z) ∈ F 2, T (w, z) = λ(w, z), which implies z = λw, and w = λz. Note
that we can assume both w, z 6= 0, because if one is 0 then so is the other, which
contradicts the assumption that (w, z) is nonzero. By substitution w = λ2w, and
since w 6= 0, this implies λ2 = 1 which means λ = 1, or −1. Then it follows that
E1(T ) = {(w,w) : w ∈ F} and E−1(T ) = {(w,−w) : w ∈ F} are the corresponding
eigenspaces.

6. Define T ∈ L(F 3) by T (z1, z2, z3) = (2z2, 0, 5z3). Then solving the system T (z, y, z) =
λ(x, y, z) shows the eigenvalues are λ = 0, 5 and the eigenspaces are E0 = span{e1},
and E5 = span{e3}

7. Define T ∈ L(Fn) by T (x1, . . . , xn) = (x1 + . . . xn, . . . , x1 + . . . xn). Then Tx = λx
implies x1 + · · · + xn = λxi for i = 1, . . . , n. Hence, λ = 0 or x1 = · · · = xn. One can
check that in the first case λ = 0, and E0(T ) = {(x1, . . . , xn) ∈ Fn : x1 + · · ·+xn = 0}.
In the later case, λ = n, and En(T ) = span{(1, 1, . . . , 1)}.

8. Let T ∈ L(F∞) by the left shift operator. Solving the equations zi+1 = λzi for
i = 1, 2 . . . shows we can let z1 be free, and then zi+1 = λiz1 for i = 1, 2, . . . . So
every λ ∈ F is an eigenvalue, and the corresponding eigenspace is given by Eλ(T ) =
span{(1, λ, λ2, . . . )}.

9. Suppose T ∈ L(V ) and dim rangeT = k. Let λ1, . . . , λm denote the distinct eigenvalues
of T . Then we need to show that m ≤ k + 1. Let S = {v1, . . . , vm} be a set of
corresponding eigenvectors. So vi 6= 0 and Tvi = λivi. In particularly, Then at most
one λi = 0. The eigenvectors corresponding to nonzero eigenvalues are in rangeT since
for λi 6=, T ( 1

λi
vi) = vi. So S contains a linearly independent subset of rangeT that has

size at least m− 1. Thus, m− 1 ≤ k =dim rangeT , and so m ≤ k + 1.

10. Assume T ∈ L(V ) is invertible. claim: λ is an eigenvalue of T if and only if λ−1 is an
eigenvalue of T−1. pf: ( =⇒ ) If λ is an eigenvalue of T , then ∃v 6= 0 such that Tv = λv.
Applying T−1 to both sides shows that v = λT−1v, which implies T−1v = 1

λv, which
implies λ−1 is an eigenvalue of T−1. For the other direction, replace T with T−1 and
λ with λ−1 and use the proof for the =⇒ direction.



11. Suppose λ is an eigenvalue of ST , and let v denote a λ eigenvector. Then

(TS)(Tv) = T (STv) = T (λv) = λTv (1)

if Tv 6= 0, then this shows that λ is an eigenvalue of TS. Otherwise, if Tv = 0, then
0 = STv = λv, which implies that λ = 0 since we know that v 6= 0. Then this implies
that TS is not invertible, since T is not invertible. Hence λ = 0 is also an eigenvalue
of TS. In either case, we have shown that if λ is an eigenvalue of ST than it is also an
eigenvalue of TS. By reversing the roles of S and T we can also conclude that if λ is
an eigenvalue of TS than it is also an eigenvalue of ST .

12. Suppose T ∈ L(V ) is such that ever v ∈ V is an eigenvector of T . Then for every v ∈ V
there exists av ∈ F such that Tv = avV . We need to show that av is independent of v
for v 6= 0. Let 0 6= w ∈ V . Then if w = cv for some c ∈ F we have that

aww = Tw = cTv = cavv = avw (2)

which implies av = aw. Otherwise, if w 6= 0 is not a multiple of v, then {v, w} is linearly
independent and

av+w(v + w) = T (v + w) = Tv + Tw = avv + aww (3)

which implies that

(av+w − av)v + (av+w − aw)w = 0 (4)

The linear independence of {v, w} implies that av = av+w = aw, and so in either case
we’ve shown that the constant is the same for all nonzero v ∈ V .


