Homework 6 Solutions

1. Suppose $u \in U_{1}+\cdots+U_{m}$. Then for $i=1, \ldots, m, \exists u_{i} \in U_{i}$ such that $u=u_{1}+\cdots+u_{m}$. Thus, $T u=T u_{1}+\ldots T u_{m}$, and by the T-invariance of $U_{i}, T u_{i} \in U_{i}$ for $i=1, \ldots m$. Therefore, $T u \in U_{1}+\cdots+U_{m}$ and so $U_{1}+\cdots+U_{m}$ is T-invariant.
2. Suppose $\left\{U_{x}\right\}_{x \in \Gamma}$ is a collection of T-invariant subspaces. If $u \in \cap_{x \in \Gamma} U_{x}$, then $u \in U_{x}$ for all $x \in \Gamma$. By T-invariance of $U_{x}, T u \in U_{x}$ for all $x \in \Gamma$. Therefore, $T u \in \cap_{x \in \Gamma} U_{x}$, and so $\cap_{x \in \Gamma} U_{x}$ is T-invariant.
3. Claim: If U is a subspace of V invariant under all $T \in \mathcal{L}(V)$ then $U=\{0\}$ or $U=V$. proof: We will prove the contrapositive. Assume $U \neq\{0\}, V$. We will find a $T \in \mathcal{L}(V)$ such that U is not T-invariant. Choose $x \in U \backslash\{0\}$ and $y \notin U$. By the basis extension theorem, we can find a basis $\left\{x, b_{1}, \ldots, b_{n}\right\}$ of V. Then define T by $T(x)=y$ and $T\left(b_{i}\right)=0$ for $i=1, \ldots n$ and extend by linearity. Then $T \in \mathcal{L}(V)$ and T maps $u \in U$ to an element outside of U. Therefore, U is not invariant under T.
4. . Suppose $S, T \in \mathcal{L}(V)$, and that $S T=T S$. Let $v \in \operatorname{null}(T-\lambda I)$. Then

$$
(T-\lambda I)(S v)=T S v-\lambda S v=S T v-\lambda S v=S(T v-\lambda v)=0 .
$$

Thus, $S v \in \operatorname{null}(T-\lambda I)$. Therefore, $\operatorname{null}(T-\lambda I)$ is S-invariant.
5. Define $T \in \mathcal{L}\left(F^{2}\right)$ by $T(w, z)=(z, w)$. If λ is an eigenvalue of T, then for some nonzero $(w, z) \in F^{2}, T(w, z)=\lambda(w, z)$, which implies $z=\lambda w$, and $w=\lambda z$. Note that we can assume both $w, z \neq 0$, because if one is 0 then so is the other, which contradicts the assumption that (w, z) is nonzero. By substitution $w=\lambda^{2} w$, and since $w \neq 0$, this implies $\lambda^{2}=1$ which means $\lambda=1$, or -1 . Then it follows that $E_{1}(T)=\{(w, w): w \in F\}$ and $E_{-1}(T)=\{(w,-w): w \in F\}$ are the corresponding eigenspaces.
6. Define $T \in \mathcal{L}\left(F^{3}\right)$ by $T\left(z_{1}, z_{2}, z_{3}\right)=\left(2 z_{2}, 0,5 z_{3}\right)$. Then solving the system $T(z, y, z)=$ $\lambda(x, y, z)$ shows the eigenvalues are $\lambda=0,5$ and the eigenspaces are $E_{0}=\operatorname{span}\left\{e_{1}\right\}$, and $E_{5}=\operatorname{span}\left\{e_{3}\right\}$
7. Define $T \in \mathcal{L}\left(F^{n}\right)$ by $T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\ldots x_{n}, \ldots, x_{1}+\ldots x_{n}\right)$. Then $T x=\lambda x$ implies $x_{1}+\cdots+x_{n}=\lambda x_{i}$ for $i=1, \ldots, n$. Hence, $\lambda=0$ or $x_{1}=\cdots=x_{n}$. One can check that in the first case $\lambda=0$, and $E_{0}(T)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in F^{n}: x_{1}+\cdots+x_{n}=0\right\}$. In the later case, $\lambda=n$, and $E_{n}(T)=\operatorname{span}\{(1,1, \ldots, 1)\}$.
8. Let $T \in \mathcal{L}\left(F^{\infty}\right)$ by the left shift operator. Solving the equations $z_{i+1}=\lambda z_{i}$ for $i=1,2 \ldots$ shows we can let z_{1} be free, and then $z_{i+1}=\lambda^{i} z_{1}$ for $i=1,2, \ldots$. So every $\lambda \in F$ is an eigenvalue, and the corresponding eigenspace is given by $E_{\lambda}(T)=$ $\operatorname{span}\left\{\left(1, \lambda, \lambda^{2}, \ldots\right)\right\}$.
9. Suppose $T \in \mathcal{L}(V)$ and dim range $T=k$. Let $\lambda_{1}, \ldots, \lambda_{m}$ denote the distinct eigenvalues of T. Then we need to show that $m \leq k+1$. Let $\mathcal{S}=\left\{v_{1}, \ldots, v_{m}\right\}$ be a set of corresponding eigenvectors. So $v_{i} \neq 0$ and $T v_{i}=\lambda_{i} v_{i}$. In particularly, Then at most one $\lambda_{i}=0$. The eigenvectors corresponding to nonzero eigenvalues are in range T since for $\lambda_{i} \neq, T\left(\frac{1}{\lambda_{i}} v_{i}\right)=v_{i}$. So \mathcal{S} contains a linearly independent subset of range T that has size at least $m-1$. Thus, $m-1 \leq k=\operatorname{dim}$ range T, and so $m \leq k+1$.
10. Assume $T \in \mathcal{L}(V)$ is invertible. claim: λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1}. pf: (\Longrightarrow) If λ is an eigenvalue of T, then $\exists v \neq 0$ such that $T v=\lambda v$. Applying T^{-1} to both sides shows that $v=\lambda T^{-1} v$, which implies $T^{-1} v=\frac{1}{\lambda} v$, which implies λ^{-1} is an eigenvalue of T^{-1}. For the other direction, replace T with T^{-1} and λ with λ^{-1} and use the proof for the \Longrightarrow direction.
11. Suppose λ is an eigenvalue of $S T$, and let v denote a λ eigenvector. Then

$$
\begin{equation*}
(T S)(T v)=T(S T v)=T(\lambda v)=\lambda T v \tag{1}
\end{equation*}
$$

if $T v \neq 0$, then this shows that λ is an eigenvalue of $T S$. Otherwise, if $T v=0$, then $0=S T v=\lambda v$, which implies that $\lambda=0$ since we know that $v \neq 0$. Then this implies that $T S$ is not invertible, since T is not invertible. Hence $\lambda=0$ is also an eigenvalue of $T S$. In either case, we have shown that if λ is an eigenvalue of $S T$ than it is also an eigenvalue of $T S$. By reversing the roles of S and T we can also conclude that if λ is an eigenvalue of $T S$ than it is also an eigenvalue of $S T$.
12. Suppose $T \in \mathcal{L}(V)$ is such that ever $v \in V$ is an eigenvector of T. Then for every $v \in V$ there exists $a_{v} \in F$ such that $T v=a_{v} V$. We need to show that a_{v} is independent of v for $v \neq 0$. Let $0 \neq w \in V$. Then if $w=c v$ for some $c \in F$ we have that

$$
\begin{equation*}
a_{w} w=T w=c T v=c a_{v} v=a_{v} w \tag{2}
\end{equation*}
$$

which implies $a_{v}=a_{w}$. Otherwise, if $w \neq 0$ is not a multiple of v, then $\{v, w\}$ is linearly independent and

$$
\begin{equation*}
a_{v+w}(v+w)=T(v+w)=T v+T w=a_{v} v+a_{w} w \tag{3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left(a_{v+w}-a_{v}\right) v+\left(a_{v+w}-a_{w}\right) w=0 \tag{4}
\end{equation*}
$$

The linear independence of $\{v, w\}$ implies that $a_{v}=a_{v+w}=a_{w}$, and so in either case we've shown that the constant is the same for all nonzero $v \in V$.

