Solutions to Homework \#4.
12. First assume there is a surjective map $T: V \rightarrow W$, so the range of T is W. Applying Theorem 3.4 gives $\operatorname{dim} V=\operatorname{dim} \operatorname{Null} T+\operatorname{dim} W$, so $\operatorname{dim} W \leq \operatorname{dim} V$. For the other direction, suppose $\operatorname{dim} V=n$, and $\operatorname{dim} W=m$, where $m \leq n$. Pick bases $\left(v_{1}, \ldots, v_{n}\right)$ for V and $\left(w_{1}, \ldots, w_{m}\right)$ for W (note we used the finite-dimensionality of V and W here). Then define a map T by sending v_{i} to w_{i} for $i=1, \ldots m$, and all other v_{i} to zero. This map is surjective, since the range is spanned by the $T v_{i}$ (this is true for any map T), and by our construction these include all the w_{i}, so they span W.
13. First assume there is a map T whose null space is U. Then by Theorem 3.4 we have $\operatorname{dim} V=$ $\operatorname{dim} U+\operatorname{dim}$ Range $T \leq \operatorname{dim} U+\operatorname{dim} W$, where the inequality comes from the fact that the range is a subspace of W. Rearranging this inequality gives $\operatorname{dim} V-\operatorname{dim} W \leq \operatorname{dim} U$. For the other direction, assume that $\operatorname{dim} V-\operatorname{dim} W \leq \operatorname{dim} U$. Pick a basis $\left(u_{1}, \ldots, u_{m}\right)$ for U and extend it to a basis $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{k}\right)$ for V. Note that $k=\operatorname{dim} V-\operatorname{dim} U \leq \operatorname{dim} W$, by our assumption. Therefore it is possible to pick an independent list $\left(w_{1}, \ldots, w_{k}\right)$ of length k in W. Define a map $T: V \rightarrow W$ by setting $T u_{i}=0$ for $i=1, \ldots, m$, and $T v_{i}=w_{i}$, for $i=1, \ldots, k$. Then this map has nullspace equal to U. Certainly U is contained in the null space, since each u_{i} goes to zero. But there can't be anything else in the nullspace either, for if some linear combination $a_{1} v_{1}+\cdots+a_{k} v_{k}$ goes to zero under T, then by linearity we would have $a_{1} w_{1}+\cdots+a_{k} w_{k}=0$, which forces all a_{i} to be zero by independence of the w_{i}. Thus the null space of this map T is exactly U.
14. First assume that T is injective. We must produce a "left-inverse" to T. We pick a basis $\left(w_{1}, \ldots, w_{m}\right)$ for Range T, extend it to a basis $\left(w_{1}, \ldots, w_{m}, \ldots, w_{n}\right)$ and define $S: W \rightarrow V$ as follows. Since each of w_{1}, \ldots, w_{m} is in the range of T, there exists, for each i, a $v_{i} \in V$ with $T v_{i}=w_{i}(i=1, \ldots, m)$. Now we define our map S by setting $S w_{1}=v_{1}, \ldots, S w_{m}=v_{m}$, and $S w_{m+1}=\cdots=S w_{n}=0$. Now we show that $S T$ is the identity map on V. For this it is sufficient to show that Null $S T=0$. But Null $S T \subseteq$ Null $T=0$ since T is injective. For the other direction, assume there is a map S with $S T$ the identity map on V. Suppose $v \in \operatorname{Null} T$. Then $T v=0$, so $S T v=0$. But $S T v=v$, so v was zero to begin with. This means the null space of T is 0 , so T is injective.
15. First assume T is surjective. We produce a "right-inverse" to T. Pick a basis v_{1}, \ldots, v_{n} for V. Then $T v_{1}, \ldots, T v_{n}$ span the range of T, which is all of W by assumption of surjectivity. So we may reduce the list $T v_{1}, \ldots, T v_{n}$ to a basis for W. After possibly reordering the $T v_{i} \mathrm{~s}$ we may assume this basis is $T v_{1}, \ldots, T v_{k}$. Now we define our map $S: W \rightarrow V$ using this basis, by setting $S\left(T v_{i}\right)=v_{i}$ for $i=1, \ldots, k$. Then for each basis vector $T v_{i}$, we have $(T S)\left(T v_{i}\right)=T\left(S T v_{i}\right)=T v_{i}$ so $T S$ is the identity on this basis, hence $T S$ is the identity map on W. For the other direction, assume there is such a map S. Pick any $w \in W$. Then $w=(T S) w=T(S w)$, so each w is in the range of T, hence T is surjective.
16. First observe that Null $T \subseteq$ Null $S T$, since if $T u=0$, then also $S T u=0$. By theorem 2.13, we can find a subspace Y of Null $S T$ such that Null $S T=$ Null $T \oplus Y$ (this Y is then also a subspace of U). Pick a basis $\left(u_{1}, \ldots, u_{k}\right)$ for Y. Then we have $\operatorname{dim} \operatorname{Null} S T=\operatorname{dim} \operatorname{Null} T+k$. Now, the $T u_{i}$ are independent, since if $a_{1} T u_{1}+\cdots+a_{k} T u_{k}=0$, then $a_{1} u_{1}+\cdots+a_{k} u_{k} \in \operatorname{Null} T$, but Null $T \cap Y=0$, so this is impossible (this says informally that T is injective when applied only to Y). Moreover,
the $T u_{i}$ are in Null S (since $u_{i} \in$ Null $S T$), hence can be extended to a basis of Null T. Thus

$$
\operatorname{dim} \text { Null } S T=\operatorname{dim} \operatorname{Null} T+k \leq \operatorname{dim} \text { Null } T+\operatorname{dim} \text { Null } S
$$

20. We produce an inverse function S. Given an $n \times 1$ column vector, which typesetting requires me to write as a row, call it (a_{1}, \ldots, a_{n}), we define $S\left(a_{1}, \ldots, a_{n}\right)$ to be the vector $a_{1}+\cdots+a_{n} v_{n} \in V$. Let us check that $S T$ is the identity map on V (by exercise 23 , this also shows that $T S$ is the identity, and hence that S and T are indeed inverses). Pick any v in V and write it as $v=c_{1} v_{1}+\cdots+c_{n} v_{n}$. Then $T v$ is the "column vector" $\left(c_{1}, \ldots, c_{n}\right)$, and by our definition above, applying S to this gives us $c_{1} v_{1}+\cdots+c_{n} v_{n}$, so $S T$ is the identity map.
21. First assume that both S and T are invertible, with inverse maps S^{-1} and T^{-1}, respectively. Then $T^{-1} S^{-1}$ is the inverse to $S T$, since $(S T)\left(T^{-1} S^{-1}\right)=S I S^{-1}=I$, and similarly $\left(T^{-1} S^{-1}\right)(S T)=I$. Conversely, suppose that $S T$ is invertible. Then it is both surjective and injective. Since it's injective, Null $S T=0$. But Null $T \subseteq$ Null $S T=0$, so T is injective also. By theorem 3.21, this means T is invertible. Similarly, since $S T$ is surjective, Range $S T=V$. But Range $S \supseteq$ Range $S T=V$, so S is surjective, hence invertible. Thus both T and S are invertible.
22. Assume that $S T=I$. Since I is invertible, $S T$ is invertible, so both T and S are surjective and injective, by the previous problem. To check that $T S=I$, we pick any $v \in V$ and show that $T S v=v$. But by surjectivity of $T, v=T u$ for some $u \in V$, so $T S v=T S T u=T I u=T u=v$, which is what we wanted. The other direction is the same - just swap S and T.
23. If $T=c I$, then for any S, and any $v \in V, S T v=S(c v)=c S v$, while $T S v=c I(S v)=c S v$, so since v was arbitrary, $S T=T S$. The other direction is the hard part. So pick a map T, which has the property that $S T=T S$ for every map $S \in \mathcal{L}(V)$. We're going to apply this assumption to a few special maps. First choose a basis $\left(v_{1}, \ldots, v_{n}\right)$ for V, and define maps $\phi_{i j}: V \rightarrow V$ by

$$
\phi_{i j}\left(v_{k}\right)= \begin{cases}v_{j} & \text { if } k=i \\ 0 & \text { if } k \neq i\end{cases}
$$

So, for example. the map ϕ_{23} sends v_{2} to v_{3} and kills all the other basis vectors. This is the abstract/linear map version of the "elementary matrices" $E_{i j}$, which you might have seen before. Now by our assumption on T, it commutes with all these ϕ s, i.e., $T \phi_{i j}=\phi_{i j} T$ for all i, j. Now, we want to know what T does to each v_{i}, so pick one of them. We'll compute $\phi_{i j} T v_{i}$ and $T \phi_{i j} v_{i}$ and set them equal to one another, by our assumption. Firstly, write $T v_{i}=a_{1} v_{1}+\cdots+a_{n} v_{n}$. Then apply $\phi_{i j}$: $\phi_{i j} T v_{i}=\phi_{i j}\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a_{i} v_{j}$, because $\phi_{i j}$ kills all the v s except v_{i}, which it sends to v_{j}. On the other hand, we compute $T \phi_{i j} v_{i}=T v_{j}$. Setting them equal to one another shows that $T v_{j}=a_{i} v_{j}$. This is true for each j, so we've found that T just scales each basis vector (in terms of matrices, this would mean the matrix for T in this basis is diagonal). But now thinking of j as fixed, and varying i, we see that the equation $T v_{j}=a_{i} v_{j}$ forces all the a_{i} s to be the same (because the left hand side doesn't involve i at all!). So $a_{1}=\cdots=a_{n}=c$, for some scalar c. Thus we've found that $T v_{j}=c v_{j}$ for each v_{j}. So T is just scaling by c on the basis vectors. By linearity, T is just scaling by c on all vectors, so $T=c I$.
25. The subset of noninvertible operators in $\mathcal{L}(V)$ is not closed under addition. For instance, take the maps $\phi_{i i}$ of the previous problem (i.e., just those $\phi_{i j}$ where $i=j$). Certainly each
$\phi_{i i}$ is not invertible (it kills all the other v_{j}, so it has n - 1 -dimensional null space). However, $\phi_{11}+\phi_{22}+\cdots+\phi_{n n}$ is the identity map, which is no longer in the set of noninvertible maps.
26. Notice that the first system of equations can be written as $A x=0$, where A is the $n \times n$ matrix whose i, j entry is the coefficient $a_{i j}$ in the system of equations, and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$, and 0 means the zero vector in \mathbb{F}^{n}. Similarly, the system of equations in (b) can be written as $A x=c$, where $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{F}^{n}$. Multiplication by A is a linear map $\mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$, so (a) is equivalent to saying that the linear map is injective. On the other hand, the condition in (b) (for $A x=c$ to have a solution for every c) is equivalent to saying that multiplication by A is surjective. Bu this linear map is an operator on \mathbb{F}^{n}, so by 3.21 its injectivity and surjectivity are equivalent.

Additional Problem: Determine exactly which 2×2 real matrices give rise to invertible maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Solution: Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be our matrix. We want to give conditions on a, b, c, d that ensure invertibility. The condition is that $a d-b c \neq 0$. Let's prove that... First, it is true in general that a map is invertible if and only if, when applied to a basis of the domain, it yields a basis for the codomain (reason: you can define the inverse map by simply sending the codomain basis back to the original basis). In our case, take the standard basis e_{1}, e_{2} for \mathbb{R}^{2}. Then multiplying by A gives two new vectors $\binom{a}{c}$ and $\binom{b}{d}$. So by the discussion above, we will have an isomorphism precisely when these two columns of A are independent. Let's investigate their independence... They're independent if and only if the equation

$$
\alpha\binom{a}{c}+\beta\binom{b}{d}=\binom{0}{0}
$$

has a solution with one or both of α, β nonzero; without loss of generality we can consider whether β is zero or not (since we may assume neither column is zero). The equation above is equivalent to the system

$$
\begin{aligned}
& \alpha a+\beta b=0 \\
& \alpha c+\beta d=0 .
\end{aligned}
$$

Multiply the first equation by c and the second by a and subtract, giving

$$
\beta a d-\beta b c=\beta(a d-b c)=0
$$

Thus the system has a nontrivial solution with β nonzero if and only if $a d-b c=0$. Equivalently, the columns of A are independent if and only if $a d-b c \neq 0$.

