
MATH 110, Linear Algebra, Fall 2013

Solutions to Homework #4.

12. First assume there is a surjective map T : V →W , so the range of T is W . Applying Theorem
3.4 gives dimV = dim Null T + dimW , so dimW ≤ dimV . For the other direction, suppose
dimV = n, and dimW = m, where m ≤ n. Pick bases (v1, . . . , vn) for V and (w1, . . . , wm) for W
(note we used the finite-dimensionality of V and W here). Then define a map T by sending vi to
wi for i = 1, . . .m, and all other vi to zero. This map is surjective, since the range is spanned by
the Tvi (this is true for any map T ), and by our construction these include all the wi, so they span
W .

13. First assume there is a map T whose null space is U . Then by Theorem 3.4 we have dimV =
dimU + dim Range T ≤ dimU + dimW , where the inequality comes from the fact that the range
is a subspace of W . Rearranging this inequality gives dimV − dimW ≤ dimU . For the other
direction, assume that dimV − dimW ≤ dimU . Pick a basis (u1, . . . , um) for U and extend it to
a basis (u1, . . . , um, v1, . . . , vk) for V . Note that k = dimV − dimU ≤ dimW , by our assumption.
Therefore it is possible to pick an independent list (w1, . . . , wk) of length k in W . Define a map
T : V →W by setting Tui = 0 for i = 1, . . . ,m, and Tvi = wi, for i = 1, . . . , k. Then this map has
nullspace equal to U . Certainly U is contained in the null space, since each ui goes to zero. But
there can’t be anything else in the nullspace either, for if some linear combination a1v1 + · · ·+akvk
goes to zero under T , then by linearity we would have a1w1 + · · ·+ akwk = 0, which forces all ai to
be zero by independence of the wi. Thus the null space of this map T is exactly U .

14. First assume that T is injective. We must produce a “left-inverse” to T . We pick a basis
(w1, . . . , wm) for Range T , extend it to a basis (w1, . . . , wm, . . . , wn) and define S : W → V as
follows. Since each of w1, . . . , wm is in the range of T , there exists, for each i, a vi ∈ V with
Tvi = wi (i = 1, . . . ,m). Now we define our map S by setting Sw1 = v1, . . . , Swm = vm, and
Swm+1 = · · · = Swn = 0. Now we show that ST is the identity map on V . For this it is sufficient
to show that Null ST = 0. But Null ST ⊆ Null T = 0 since T is injective. For the other direction,
assume there is a map S with ST the identity map on V . Suppose v ∈ Null T . Then Tv = 0, so
STv = 0. But STv = v, so v was zero to begin with. This means the null space of T is 0, so T is
injective.

15. First assume T is surjective. We produce a “right-inverse” to T . Pick a basis v1, . . . , vn for
V . Then Tv1, . . . , T vn span the range of T , which is all of W by assumption of surjectivity. So
we may reduce the list Tv1, . . . , T vn to a basis for W . After possibly reordering the Tvis we may
assume this basis is Tv1, . . . , T vk. Now we define our map S : W → V using this basis, by setting
S(Tvi) = vi for i = 1, . . . , k. Then for each basis vector Tvi, we have (TS)(Tvi) = T (STvi) = Tvi
so TS is the identity on this basis, hence TS is the identity map on W . For the other direction,
assume there is such a map S. Pick any w ∈ W . Then w = (TS)w = T (Sw), so each w is in the
range of T , hence T is surjective.

16. First observe that Null T ⊆ Null ST , since if Tu = 0, then also STu = 0. By theorem 2.13, we
can find a subspace Y of Null ST such that Null ST = Null T⊕Y (this Y is then also a subspace of
U). Pick a basis (u1, . . . , uk) for Y . Then we have dim Null ST = dim Null T +k. Now, the Tui are
independent, since if a1Tu1 + · · ·+akTuk = 0, then a1u1 + · · ·+akuk ∈ Null T , but Null T ∩Y = 0,
so this is impossible (this says informally that T is injective when applied only to Y ). Moreover,
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the Tui are in Null S (since ui ∈ Null ST ), hence can be extended to a basis of Null T . Thus

dim Null ST = dim Null T + k ≤ dim Null T + dim Null S

20. We produce an inverse function S. Given an n×1 column vector, which typesetting requires me
to write as a row, call it (a1, . . . , an), we define S(a1, . . . , an) to be the vector a1+· · ·+anvn ∈ V . Let
us check that ST is the identity map on V (by exercise 23, this also shows that TS is the identity,
and hence that S and T are indeed inverses). Pick any v in V and write it as v = c1v1 + · · ·+ cnvn.
Then Tv is the “column vector” (c1, . . . , cn), and by our definition above, applying S to this gives
us c1v1 + · · ·+ cnvn, so ST is the identity map.

22. First assume that both S and T are invertible, with inverse maps S−1 and T−1, respec-
tively. Then T−1S−1 is the inverse to ST , since (ST )(T−1S−1) = SIS−1 = I, and similarly
(T−1S−1)(ST ) = I. Conversely, suppose that ST is invertible. Then it is both surjective and
injective. Since it’s injective, Null ST = 0. But Null T ⊆ Null ST = 0, so T is injective also. By
theorem 3.21, this means T is invertible. Similarly, since ST is surjective, Range ST = V . But
Range S ⊇ Range ST = V , so S is surjective, hence invertible. Thus both T and S are invertible.

23. Assume that ST = I. Since I is invertible, ST is invertible, so both T and S are surjective
and injective, by the previous problem. To check that TS = I, we pick any v ∈ V and show that
TSv = v. But by surjectivity of T , v = Tu for some u ∈ V , so TSv = TSTu = TIu = Tu = v,
which is what we wanted. The other direction is the same - just swap S and T .

24. If T = cI, then for any S, and any v ∈ V , STv = S(cv) = cSv, while TSv = cI(Sv) = cSv, so
since v was arbitrary, ST = TS. The other direction is the hard part. So pick a map T , which has
the property that ST = TS for every map S ∈ L(V ). We’re going to apply this assumption to a
few special maps. First choose a basis (v1, . . . , vn) for V , and define maps φij : V → V by

φij(vk) =

{
vj if k = i

0 if k 6= i

So, for example. the map φ23 sends v2 to v3 and kills all the other basis vectors. This is the
abstract/linear map version of the “elementary matrices” Eij , which you might have seen before.
Now by our assumption on T , it commutes with all these φs, i.e., Tφij = φijT for all i, j. Now, we
want to know what T does to each vi, so pick one of them. We’ll compute φijTvi and Tφijvi and
set them equal to one another, by our assumption. Firstly, write Tvi = a1v1 + · · · + anvn. Then
apply φij : φijTvi = φij(a1v1 + · · · + anvn) = aivj , because φij kills all the vs except vi, which it
sends to vj . On the other hand, we compute Tφijvi = Tvj . Setting them equal to one another
shows that Tvj = aivj . This is true for each j, so we’ve found that T just scales each basis vector
(in terms of matrices, this would mean the matrix for T in this basis is diagonal). But now thinking
of j as fixed, and varying i, we see that the equation Tvj = aivj forces all the ais to be the same
(because the left hand side doesn’t involve i at all!). So a1 = · · · = an = c, for some scalar c. Thus
we’ve found that Tvj = cvj for each vj . So T is just scaling by c on the basis vectors. By linearity,
T is just scaling by c on all vectors, so T = cI.

25. The subset of noninvertible operators in L(V ) is not closed under addition. For instance,
take the maps φii of the previous problem (i.e., just those φij where i = j). Certainly each
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φii is not invertible (it kills all the other vj , so it has n − 1-dimensional null space). However,
φ11 + φ22 + · · ·+ φnn is the identity map, which is no longer in the set of noninvertible maps.

26. Notice that the first system of equations can be written as Ax = 0, where A is the n×n matrix
whose i, j entry is the coefficient aij in the system of equations, and x = (x1, . . . , xn) ∈ Fn, and 0
means the zero vector in Fn. Similarly, the system of equations in (b) can be written as Ax = c,
where c = (c1, . . . , cn) ∈ Fn. Multiplication by A is a linear map Fn → Fn, so (a) is equivalent to
saying that the linear map is injective. On the other hand, the condition in (b) (for Ax = c to have
a solution for every c) is equivalent to saying that multiplication by A is surjective. Bu this linear
map is an operator on Fn, so by 3.21 its injectivity and surjectivity are equivalent.

Additional Problem: Determine exactly which 2 × 2 real matrices give rise to invertible maps

R2 → R2. Solution: Let A =

(
a b
c d

)
be our matrix. We want to give conditions on a, b, c, d that

ensure invertibility. The condition is that ad− bc 6= 0. Let’s prove that... First, it is true in general
that a map is invertible if and only if, when applied to a basis of the domain, it yields a basis for
the codomain (reason: you can define the inverse map by simply sending the codomain basis back
to the original basis). In our case, take the standard basis e1, e2 for R2. Then multiplying by A

gives two new vectors

(
a
c

)
and

(
b
d

)
. So by the discussion above, we will have an isomorphism

precisely when these two columns of A are independent. Let’s investigate their independence...
They’re independent if and only if the equation

α

(
a
c

)
+ β

(
b
d

)
=

(
0
0

)
has a solution with one or both of α, β nonzero; without loss of generality we can consider whether
β is zero or not (since we may assume neither column is zero). The equation above is equivalent
to the system

αa+ βb = 0

αc+ βd = 0.

Multiply the first equation by c and the second by a and subtract, giving

βad− βbc = β(ad− bc) = 0

Thus the system has a nontrivial solution with β nonzero if and only if ad−bc = 0. Equivalently,
the columns of A are independent if and only if ad− bc 6= 0.
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