
MATH 110 HOMEWORK 3 SOLUTIONS

1. Let {v} be a basis for our given 1-dimensional vector space V . Since V is one-dimensional, we
can write T (v) = av for some scalar a ∈ F . Then for any other vector u ∈ V we can write u = bv
for some b ∈ F . Then we have

T (u) = T (bv)

= bT (v)

= bav

= abv = au.

Therefore T is multiplication by the scalar a.

2. Intuitively, the problem is asking for a function f : R2 → R which is linear when restricted to
every line through the origin, but the linear functions for various lines through the origin don’t fit
together to give a linear function R2 → R. An example is given by the function

f(x, y) =

{
x if y = 0

0 if y 6= 0.

Then if y = 0, f(ax, ay) = ax = af(x, y) and if y 6= 0, then f(ax, ay) = 0 = af(x, y). So f is
homogeneous. But f is not linear since (for example) f(1, 1) = 0 6= 1 = f(1, 0) + f(0, 1).

3. Let U be the given subspace of V . Choose a basis {u1, ..., un} of U , and extend it to a basis
{u1, ..., un, v1, ..., vk} of V . Given a linear transformation S : U → W , define T : V → W by first
defining the values of T on the basis vectors as follows:

T (ui) = S(ui), 1 ≤ i ≤ n,
T (vi) = 0, 1 ≤ i ≤ k.

As explained on p. 40 in your text, there exists a unique linear transformation T : V →W extending
this definition on the basis vectors {u1, ..., un, v1, .., vk}. Then for any vector u ∈ U , we can write
u =

∑
i aiui, and

T (u) = T (
∑
i

aiui) =
∑
i

aiT (ui) =
∑
i

aiS(ui) = S(u).

Therefore T agrees with S on U as was to be shown.

4. Let U be the vector space {au : a ∈ F}. We want to show that V = null T ⊕ U . First
we show that null T ∩ U = {0}. Suppose v ∈ null T ∩ U . Therefore v = au for a ∈ F , and
0 = T (v) = T (au) = aT (u). Since T (u) 6= 0, this implies a = 0 and therefore v = 0.

Next we show that V = null T+U . This means that for any v ∈ V we want to write v = n+au for
n ∈ null T and a ∈ F . Applying T to both sides of this equation, we see that we want T (v) = aT (u).
Since T (u) 6= 0 is a non-zero scalar, we can divide to obtain a = T (v)/T (u). We then set n = v−au,
where a = T (v)/T (u). We check that

T (n) = T (v)− T (v)

T (u)
T (u) = 0,
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and therefore n ∈ null T as is required. It is clear that v = n + au for this definition of n and a,
showing that V = null T + U and completing the proof.

5. Suppose we have a linear relation a1T (v1) + ... + anT (vn) = 0. By linearity, we rewrite this as
T (a1v1 + ... + anvn) = 0. Since T is injective, we conclude that a1v1 + ... + anvn = 0, and since
{v1, ..., vn} is linearly independent we conclude that a1 = ... = an = 0. Therefore {T (v1), ..., T (vn)}
is linearly independent.

7. Let w be any vector in W . Since T : V → W is surjective, we can write w = T (v) for some
v ∈ V . Since {v1, ..., vn} spans V , we can write v = a1v1 + ...+ anvn for some scalars a1, .., an ∈ F .
Therefore

w = T (a1v1 + ...+ anvn) = a1T (v1) + ...+ anT (vn),

showing that w is in the span of T (v1), ..., T (vn). Therefore {T (v1), ..., T (vn)} spans W .

8. Let T : V → W be the given linear transformation. Let {n1, ..., nk} be a basis for nulll T , and
extend this to a basis {n1, ..., nk, v1, ..., vm} of V . Let U = Span(v1, ..., vm). We claim that this U
satisfies the requirements of the proposition.

First we show that U ∩Null T = 0. Suppose u ∈ U ∩ null T . Then

u = a1n1 + ...+ aknk = b1v1 + ...+ bmvm

for some scalars a1, ..., ak, b1, ..., bm (since n1, ..., nk span nulll T and v1, ..., vm span U). But since
{n1, ..., nk, v1, ..., vm} is a basis for V , u must have a unique expression as a linear combination of
{n1, ..., nk, v1, ..., vm}. The only way for the two expressions above to be the same linear combination
of {n1, ..., nk, v1, ..., vm} is for all the coefficients to be 0, which implies that u = 0.

Now we must show that range T = {Tu : u ∈ U}. It is clear that {Tu : u ∈ U} ⊆ range T , so
we must show that range T ⊆ {Tu : u ∈ U}. Any vector in range T can be written as T (v), for
v ∈ V . By the definition of U we can write v = n + u, for n ∈ Null T and u ∈ U . Namely, write
v = a1n1 + ... + aknk + b1v1 + ... + bmvm and let n = a1n1 + ... + aknk and u = b1v1 + ... + bmvm.
Then applying T , we get that

T (v) = T (n+ u) = T (n) + T (u) = T (u),

showing that range T ⊂ {Tu : u ∈ U} as required.

9. Notice that the dimension of Null T is 2. Namely, we have a basis for Null T consisting of
the vectors (5, 1, 0, 0) and (0, 0, 7, 1). We obtained these vectors by plugging the values 1,0 and 0,1
respectively for the free parameters x2 and x4. By Theorem 3.4, dim range T = 4 − 2 = 2, so T
must be surjective by Proposition 2.17.

10. From the given description of the null space we see that the null space has dimension 2, since
there are two free parameters x2 and x5. But we must have

dim V = dim Null T + dim Range T.

The terms on the right hand side are at most 2, while the left hand side is 5. This is impossible.

11. We cannot directly apply Theorem 3.4 since that theorem assumes V is finite dimensional.
Instead, we proceed as follows. Let T : V → W be a linear transformation with finite-dimensional
null space and range. Let {n1, ..., nk} be a basis for Null T and {w1, ..., wm} a basis for Range T .
For each wi, let vi be a vector in V such that T (vi) = wi. We claim that {n1, ..., nk, v1, .., vm} spans
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V , which implies that V is finite dimensional. Given any v ∈ V , we can write

T (v) = a1w1 + ...+ amwm = a1T (v1) + ...+ amT (vm).

Now notice that

T (v − a1v1 − ...− amvm) = T (v)− a1T (v1)− ...− amT (vm) = 0

by the above. Therefore v − a1v1 − ...− amvm ∈ Null T , so we can write

v − a1v1 − ...− amvn = b1n1 + ...+ bknk

for some scalars b1, ..., bk. Rearranging, we have that

v = b1n1 + ...+ bknk + a1v1 + ...+ amvm

showing that {n1, ..., nk, v1, ..., vm} spans V and hence V is finite dimensional.

Additional Problem. First we explain how to view L(U1,W ) as a subspace of L(V,W ). Let

T : U1 → W be a linear transformation. Then there is a linear transformation T̃ : V → W defined
as follows: given any v ∈ V , we can (uniquely) write v = u1 + u2 for u1 ∈ U1 and u2 ∈ U2. Then we

set T̃ (u1 + u2) = T (u1). We leave it to the reader to check that T̃ is a linear transformation (this
is much easier to do yourself than to read a proof). This gives us a map ι1 : L(U1,W )→ L(V,W ).
In fact, ι1 is a linear transformation, as I encourage you to check. Finally, ι1 is injective: for if
ι1(T ) = T̃ = 0, this means that T̃ (u1 + u2) = T (u1) = 0 for any u1 ∈ U1 and u2 ∈ U2, implying
that T = 0. Therefore ι1 induces an isomorphism (bijective linear map) from L(U1,W ) onto its
range in L(V,W ), which we denote by L (U1,W ). Similarly, we can define an injective linear map
ι2 : L(U2,W ) → L(V,W ) by ι2(T )(u1 + u2) = T (u2) for a given T : U2 → W . We let L (U2,W )
denote the range of ι2. To summarize, viewing L(U1,W ) and L(U2,W ) as subspaces of L(V,W ) is
the same as identifying L(U1,W ) with L (U1,W ), and L(U2,W ) with L (U2,W ).

Now we show that L(V,W ) = L (U1,W ) ⊕L (U2,W ). This is much easier to do by proving a
lemma first:

Lemma 1. L (U1,W ) consists of the linear transformations T : V →W such that T (U2) = 0 (i.e.,
T restricts to the zero function on the subspace U2). Similarly, L (U2,W ) consists of the linear
transformations T : V →W such that T (U1) = 0.

Proof. It suffices to show the statement for U1. From the definition of ι1 : L(U1,W ) → L(V,W ),
it is clear that for any T ∈ L (U1,W ) we have T (U2) = 0, since U2 consists of vectors of the form
0 + u2, for u2 ∈ U2. Conversely, suppose T (U2) = 0. Define a linear transformation T : U1 →W to
be the restriction of T to U1. Then for any v = u1 + u2 ∈ V ,

ι1(T )(u1 + u2) = T (u1) = T (u1) = T (u1) + T (u2) = T (u1 + u2),

showing that ι1(T ) = T and therefore T lies in the range of ι1. This proves the lemma. �

We can now show quite easily that L (U1,W ) ∩L (U2,W ) = {0}, since according to the lemma
this intersection consists of those T : V → W such that T (U1) = T (U2) = 0. But then for any
v = u1 + u2 ∈ V , T (u1 + u2) = T (u1) + T (u2) = 0.

Finally, we show that L (U1,W ) + L (U2,W ) = L (V,W ). Given any T : V → W , define
T 1 : U1 → W to be the restriction of T to the subspace U1, i.e., T 1(u1) = T (u1). Similarly, define
T 2 : U2 →W to be the restriction of T to U2. Then we claim that

T = ι1(T 1) + ι2(T 2),

which will finish the proof. To show this, we apply both sides to an element v = u1 + u2 of V . On
the left-hand side we have T (u+ v). To compute the right hand side, note that

ι1(T 1)(u1 + u2) = T 1(u1) = T (u1),
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and similarly ι2(T 1)(u1 +u2) = T (u2). Therefore the fact that T = ι1(T 1) + ι2(T 2) follows from the
fact that T is linear.


