Chapter 2

3. Proof. By the dependence of $\left(v_{1}+w, v_{2}+w, \cdots, v_{n}+w\right)$, there is some sequence a_{1}, \cdots, a_{n} of real numbers, not all 0 , such that

$$
a_{1}\left(v_{1}+w\right)+\cdots+a_{n}\left(v_{n}+w\right)=0 .
$$

Rearranging terms,

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=-\left(a_{1}+\cdots+a_{n}\right) w
$$

Since the a_{1} are not all 0 and $\left(v_{1}, \cdots, v_{n}\right)$ is independent, it follows that the LHS of the above equation is not equal to 0 . Therefore, on the RHS, $a_{1}+\cdots+a_{n}$ is also non-0 (and, incidentally, w is non-0). So we may divide across:

$$
f r a c-a_{1} a_{1}+\cdots+a_{n} v_{1}+\cdots+\frac{-a_{n}}{a_{1}+\cdots+a_{n}} v_{n}=w .
$$

So by definition, $w \in \operatorname{span}\left(v_{1}, \cdots, v_{n}\right)$, as desired.
5. Proof. Let e_{n} denote the infinite sequence of elements of \mathbf{F} with all 0 s except for a 1 in the $n^{\text {th }}$ place. For every n, the sequence $\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ is linearly independent: for any $a_{1}, \cdot, a_{n} \in \mathbf{F}$ not all equal to 0 ,

$$
a_{1} e_{1}+\cdots+a_{n} e_{n}=\left(a_{1}, a_{2}, \cdots, a_{n-1}, a_{n}, 0,0, \cdots\right) \neq(0,0, \cdots)
$$

We conclude from problem 7, below, that \mathbf{F}^{∞} is infinite dimensional over \mathbf{F}.
7. Proof. \Rightarrow : Suppose that V is infinite dimensional. We will prove by induction that there exists some sequence $v_{1}, v_{2} \cdots \in V$ such that for every n, the first n of these are independent.

Base case. Because V is infinite dimensional, $V \neq\{0\}$, since $\{0\}$ has dimension 0 over any field. Therefore, there is some non-zero $v_{1} \in V$, and so $\left(v_{1}\right)$ is independent.

Inductive step. Assume that $\left(v_{1}, \cdots, v_{n}\right)$ is an independent set of vectors in V. By our premise, these vectors cannot span V, otherwise V would have dimension at most n; so there is some $v_{n+1} \in V-\operatorname{span}\left(v_{1}, \cdots, v_{n}\right)$. In particular, this means that $v_{n+1} \neq 0$. We will show that $\left(v_{1}, \cdots, v_{n}, v_{n+1}\right)$ is independent.

Consider any a_{1}, \cdots, a_{n+1} and suppose that

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}+a_{n+1} v_{n+1}=0 .
$$

Rearranging terms,

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=-a_{n+1} v_{n+1} .
$$

If a_{n+1} were non- 0 then we could divide across by it, and we would have written v_{n+1} as a linear combination of the v_{i} with $i \leq n$. By our definition of v_{n+1} as not belonging to the span of the other vectors, this is not possible. So $a_{n+1}=0$. Thus,

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0
$$

and by our inductive hypothesis that $\left(v_{1}, \cdots, v_{n}\right)$ is independent, it follows that all of the a_{i} equal 0 . We conclude that $\left(v_{1}, \cdots, v_{n+1}\right)$ is independent, as desired.

By the principle of mathematical induction (PMI), there exists a sequence v_{1}, v_{2}, \cdots such that for every n, the first n of these are independent, as desired.
\Leftarrow : Now, suppose that there exists a sequence $v_{1}, v_{2}, \cdots \in V$ such that for every n, the first n of these are independent, and we will show that V is infinite dimensional. By a theorem in Axler, each spanning set for a vector space as at least as large as any linearly independent set. Since V contains a linearly independent set of size n for every positive integer n, it can have no finite spanning set. So by definition, the space is infinite dimensional.
8. Every vector in U is of the form

$$
\left(3 x_{2}, x_{2}, 7 x_{4}, x_{4}, x_{5}\right)=x_{2}(3,1,0,0,0)+x_{4}(0,0,7,1,0)+x_{5}(0,0,0,0,1) .
$$

Moreover, distinct values of x_{2}, x_{4}, and x_{5} always result in distinct combinations. Therefore the set $\{(3,1,0,0,0) ;(0,0,7,1,0) ;(0,0,0,0,1)\}$ is a basis for U.
9. This is true.

Proof. Let $p_{0}=1 ; p_{1}=x ; p_{2}=x^{2}+x^{3} ; p_{3}=x^{3}$. This is a basis for $\mathcal{P}_{4}(\mathbf{F})$.
10. Proof. First, we will not address the problem in the case $n=0$. In this case, the claim is either trivial or nonsense, depending on our whether we define the empty direct sum. So we assume $n \geq 1$.

By a theorem in Axler, V has some basis $B=\left(b_{1}, \cdots, b_{n}\right)$. Let $U_{i}=\operatorname{span}\left(b_{i}\right)$ for each i from 1 to n. Now we will show that the U_{i} are direct-summable. By a theorem in Axler, it suffices to show that a sum $u_{1}+\cdots+u_{n}$ of one vector from each of the spaces U_{i} comes out to 0 only if all of the chosen vectors u_{i} are 0 . If $u_{i} \in U_{i}$ for each i then each $u_{i}=a_{i} b_{i}$ for some a_{i}. Thus, if

$$
u_{1}+\cdots+u_{n}=0
$$

then

$$
a_{1} b_{1}+\cdots+a_{n} b_{n}=0 .
$$

By the independence of B, this means that all of the a_{i} equal 0 , and thus all of the u_{i} equal 0 . Therefore, the direct sum $U_{1} \oplus \cdots \oplus U_{n}$ is defined. Since this direct sum equals a subspace of V containing the basis B, it must equal V itself.
11. Proof. U has some basis $B=\left(b_{1}, \cdots, b_{n}\right)$. Since $\operatorname{dim}(U)=\operatorname{dim}(V)=n$, it follows that B is an independent set in V of $\operatorname{size} \operatorname{dim}(V)$. Therefore, by a proposition in Axler, B is a basis for V. Since $U=\operatorname{span}(B)=V$, we conclude that $U=V$, as desired.
13. Proof. By a (major!) theorem in Axler $\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)=\operatorname{dim}(U+V)$. Plugging everything in, this gives $\operatorname{dim}(U \cap V)=0$. The only 0 -dimensional vector space is the trivial space $\{0\}$. Thus, $U \cap V=\{0\}$.
14. Proof. By the same formula as in the previous problem,

$$
\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)=10-\operatorname{dim}(U \cap W)=\operatorname{dim}(U+W) \leq 9
$$

Therefore $\operatorname{dim}(U \cap W) \geq 1$, so in particular, $U \cap W$ is non-trivial.
15. This formula is not true in general.

Proof by counterexample. We consider three subspaces of \mathbf{R}^{3}. Let $U_{1}=\operatorname{span}((1,0,0),(0,1,0)$; $U_{2}=\operatorname{span}((1,0,0),(0,0,1))$; and $U_{3}=\operatorname{span}((1,0,0),(0,1,1))$. Then for $i \neq j$, the intersection $U_{i} \cap U_{j}=\operatorname{span}((1,0,0))$. Furthermore, $U_{1} \cap U_{2} \cap U_{3}=\operatorname{span}((1,0,0))$. Thus,

$$
\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)+\operatorname{dim}\left(U_{3}\right)-\operatorname{dim}\left(U_{1} \cap U_{2}\right)-\operatorname{dim}\left(U_{1} \cap U_{3}\right)-\operatorname{dim}\left(U_{2} \cap U_{3}\right)+\operatorname{dim}\left(U_{1} \cap U_{2} \cap U_{3}\right)=6
$$ $\neq \operatorname{dim}\left(U_{1}+U_{2}+U_{3}\right)=3$.

16. Proof by induction on m. Base case. In the $m=1$ case, this formula reduces to $\operatorname{dim}\left(U_{1}\right) \leq$ $\operatorname{dim}\left(U_{1}\right)$, which is trivial.

Inductive step. We assume that

$$
\operatorname{dim}\left(U_{1}+\cdots+U_{m}\right) \leq \operatorname{dim}\left(U_{1}\right)+\cdots+\operatorname{dim}\left(U_{m}\right)
$$

and we will prove that

$$
\operatorname{dim}\left(U_{1}+\cdots+U_{m}+U_{m+1}\right) \leq \operatorname{dim}\left(U_{1}\right)+\cdots+\operatorname{dim}\left(U_{m}\right)+\operatorname{dim}\left(U_{m+1}\right)
$$

Let $W=U_{1}+\cdots+U_{m}$. By a theorem in Axler and our inductive hypothesis,

$$
\begin{aligned}
\operatorname{dim}\left(W+U_{m+1}\right) & =\operatorname{dim}(W)+\operatorname{dim}\left(U_{m+1}\right)-\operatorname{dim}\left(W \cap U_{m+1}\right) \\
& \leq \operatorname{dim}(W)+\operatorname{dim}\left(U_{m+1}\right) \\
& \leq\left(\operatorname{dim}\left(U_{1}\right)+\cdots+\operatorname{dim}\left(U_{m}\right)\right)+\operatorname{dim}\left(U_{m+1}\right)
\end{aligned}
$$

as desired.
Therefore, by the PMI, the inequality holds for every $m \geq 1$.

Extra Problem

Proof. Consider the space $U=\operatorname{span}\left(B_{1} \cup B_{2}\right)$. This space U is a subspace of V, and because B_{1} and B_{2} span W_{1} and W_{2} respectively, these two spaces are subsets of U. As Axler observes, $W_{1} \oplus W_{2}$ is the smallest subspace of V that contains both W_{1} and W_{2}. Thus, $W_{1} \oplus W_{2} \subseteq U$. But by our premise, $W_{1} \oplus W_{2}=V$. Thus $V \subseteq U$, and finally, $U=V$.

Let

$$
d_{1}=\left|B_{1}\right|=\operatorname{dim}\left(W_{1}\right) \text { and } d_{2}=\left|B_{2}\right|=\operatorname{dim}\left(W_{2}\right) .
$$

Then $\left|B_{1} \cup B_{2}\right| \leq d_{1}+d_{2}$. By a theorem in Axler, $\operatorname{dim}(V)=d_{1}+d_{2}$. Therefore, since $B_{1} \cup B_{2}$ spans V, it is at least as big as a basis for V; in particular, $\left|B_{1} \cup B_{2}\right| \geq d_{1}+d_{2}$. It follows that $\left|B_{1}+B_{2}\right|=d_{1}+d_{2}$ exactly. Since $B_{1} \cup B_{2}$ spans V and has cardinality equal to $\operatorname{dim}(V)$, we conclude that $B_{1} \cup B_{2}$ is a basis for V.

