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Chapter 2

3. Proof. By the dependence of (v1+w, v2+w, · · · , vn+w), there is some sequence a1, · · · , an
of real numbers, not all 0, such that

a1(v1 + w) + · · ·+ an(vn + w) = 0.

Rearranging terms,
a1v1 + · · ·+ anvn = −(a1 + · · ·+ an)w.

Since the a1 are not all 0 and (v1, · · · , vn) is independent, it follows that the LHS of the
above equation is not equal to 0. Therefore, on the RHS, a1 + · · · + an is also non-0 (and,
incidentally, w is non-0). So we may divide across:

frac−a1a1 + · · ·+ anv1 + · · ·+ −an
a1 + · · ·+ an

vn = w.

So by definition, w ∈ span(v1, · · · , vn), as desired. �

5. Proof. Let en denote the infinite sequence of elements of F with all 0s except for a 1 in the nth

place. For every n, the sequence (e1, e2, · · · , en) is linearly independent: for any a1, ·, an ∈ F
not all equal to 0,

a1e1 + · · ·+ anen = (a1, a2, · · · , an−1, an, 0, 0, · · · ) 6= (0, 0, · · · ).
We conclude from problem 7, below, that F∞ is infinite dimensional over F. �

7. Proof. ⇒: Suppose that V is infinite dimensional. We will prove by induction that there
exists some sequence v1, v2 · · · ∈ V such that for every n, the first n of these are independent.

Base case. Because V is infinite dimensional, V 6= {0}, since {0} has dimension 0 over
any field. Therefore, there is some non-zero v1 ∈ V , and so (v1) is independent.
Inductive step. Assume that (v1, · · · , vn) is an independent set of vectors in V . By our

premise, these vectors cannot span V , otherwise V would have dimension at most n; so there
is some vn+1 ∈ V − span(v1, · · · , vn). In particular, this means that vn+1 6= 0. We will show
that (v1, · · · , vn, vn+1) is independent.

Consider any a1, · · · , an+1 and suppose that

a1v1 + · · ·+ anvn + an+1vn+1 = 0.

Rearranging terms,
a1v1 + · · ·+ anvn = −an+1vn+1.

If an+1 were non-0 then we could divide across by it, and we would have written vn+1 as a
linear combination of the vi with i ≤ n. By our definition of vn+1 as not belonging to the
span of the other vectors, this is not possible. So an+1 = 0. Thus,

a1v1 + · · ·+ anvn = 0,

and by our inductive hypothesis that (v1, · · · , vn) is independent, it follows that all of the ai
equal 0. We conclude that (v1, · · · , vn+1) is independent, as desired.

By the principle of mathematical induction (PMI), there exists a sequence v1, v2, · · · such
that for every n, the first n of these are independent, as desired.



⇐: Now, suppose that there exists a sequence v1, v2, · · · ∈ V such that for every n, the first
n of these are independent, and we will show that V is infinite dimensional. By a theorem
in Axler, each spanning set for a vector space as at least as large as any linearly independent
set. Since V contains a linearly independent set of size n for every positive integer n, it can
have no finite spanning set. So by definition, the space is infinite dimensional. �

8. Every vector in U is of the form

(3x2, x2, 7x4, x4, x5) = x2(3, 1, 0, 0, 0) + x4(0, 0, 7, 1, 0) + x5(0, 0, 0, 0, 1).

Moreover, distinct values of x2, x4, and x5 always result in distinct combinations. Therefore
the set {(3, 1, 0, 0, 0); (0, 0, 7, 1, 0); (0, 0, 0, 0, 1)} is a basis for U .

9. This is true.

Proof. Let p0 = 1; p1 = x; p2 = x2 + x3; p3 = x3. This is a basis for P4(F). �

10. Proof. First, we will not address the problem in the case n = 0. In this case, the claim is
either trivial or nonsense, depending on our whether we define the empty direct sum. So we
assume n ≥ 1.

By a theorem in Axler, V has some basis B = (b1, · · · , bn). Let Ui = span(bi) for each i
from 1 to n. Now we will show that the Ui are direct-summable. By a theorem in Axler, it
suffices to show that a sum u1 + · · ·+ un of one vector from each of the spaces Ui comes out
to 0 only if all of the chosen vectors ui are 0. If ui ∈ Ui for each i then each ui = aibi for
some ai. Thus, if

u1 + · · ·+ un = 0

then

a1b1 + · · ·+ anbn = 0.

By the independence of B, this means that all of the ai equal 0, and thus all of the ui equal
0. Therefore, the direct sum U1⊕· · ·⊕Un is defined. Since this direct sum equals a subspace
of V containing the basis B, it must equal V itself. �

11. Proof. U has some basis B = (b1, · · · , bn). Since dim(U) = dim(V ) = n, it follows that B is
an independent set in V of size dim(V ). Therefore, by a proposition in Axler, B is a basis
for V . Since U = span(B) = V , we conclude that U = V , as desired. �

13. Proof. By a (major!) theorem in Axler dim(U) + dim(V ) − dim(U ∩ V ) = dim(U + V ).
Plugging everything in, this gives dim(U ∩ V ) = 0. The only 0-dimensional vector space is
the trivial space {0}. Thus, U ∩ V = {0}. �

14. Proof. By the same formula as in the previous problem,

dim(U) + dim(W )− dim(U ∩W ) = 10− dim(U ∩W ) = dim(U + W ) ≤ 9.

Therefore dim(U ∩W ) ≥ 1, so in particular, U ∩W is non-trivial. �

15. This formula is not true in general.



Proof by counterexample. We consider three subspaces of R3. Let U1 = span((1, 0, 0), (0, 1, 0);
U2 = span((1, 0, 0), (0, 0, 1)); and U3 = span((1, 0, 0), (0, 1, 1)). Then for i 6= j, the intersec-
tion Ui ∩ Uj = span((1, 0, 0)). Furthermore, U1 ∩ U2 ∩ U3 = span((1, 0, 0)). Thus,

dim(U1) + dim(U2) + dim(U3)− dim(U1 ∩ U2)− dim(U1 ∩ U3)− dim(U2 ∩ U3) + dim(U1 ∩ U2 ∩ U3) = 6− 3 + 1

6=dim(U1 + U2 + U3) = 3.

�

16. Proof by induction on m. Base case. In the m = 1 case, this formula reduces to dim(U1) ≤
dim(U1), which is trivial.

Inductive step. We assume that

dim(U1 + · · ·+ Um) ≤ dim(U1) + · · ·+ dim(Um)

and we will prove that

dim(U1 + · · ·+ Um + Um+1) ≤ dim(U1) + · · ·+ dim(Um) + dim(Um+1).

Let W = U1 + · · ·+ Um. By a theorem in Axler and our inductive hypothesis,

dim(W + Um+1) = dim(W ) + dim(Um+1)− dim(W ∩ Um+1)

≤ dim(W ) + dim(Um+1)

≤ (dim(U1) + · · ·+ dim(Um)) + dim(Um+1),

as desired.
Therefore, by the PMI, the inequality holds for every m ≥ 1. �

Extra problem

Proof. Consider the space U = span(B1∪B2). This space U is a subspace of V , and because
B1 and B2 span W1 and W2 respectively, these two spaces are subsets of U . As Axler
observes, W1 ⊕ W2 is the smallest subspace of V that contains both W1 and W2. Thus,
W1 ⊕W2 ⊆ U . But by our premise, W1 ⊕W2 = V . Thus V ⊆ U , and finally, U = V .

Let
d1 = |B1| = dim(W1) and d2 = |B2| = dim(W2).

Then |B1∪B2| ≤ d1+d2. By a theorem in Axler, dim(V ) = d1+d2. Therefore, since B1∪B2

spans V , it is at least as big as a basis for V ; in particular, |B1 ∪ B2| ≥ d1 + d2. It follows
that |B1 +B2| = d1 +d2 exactly. Since B1∪B2 spans V and has cardinality equal to dim(V ),
we conclude that B1 ∪B2 is a basis for V . �


