Solutions to Homework \#1.
Chapter 1.
1.

$$
\frac{1}{(a+i b)}=\frac{(a-i b)}{(a+i b)(a-i b)}=\frac{a-i b}{a^{2}+b^{2}}=\frac{a}{a^{2}+b}+i \frac{-b}{a^{2}+b^{2}}
$$

3. Recall that $-v=(-1) v$. Thus $-(-v)=(-1)((-1) v)=((-1)(-1)) v=(1) v=v$.
4. Suppose $a v=0$ but $a \neq 0$. Then $v=(a / a) v=(1 / a)(a v)=(1 / a) 0=0$.
5. Take $U=\{(m, n) \mid m, n \in \mathbb{Z}\} \subset \mathbb{R}^{2}$. It is nonempty and closed under addition and taking additive inverses, but it is not a subspace since it is not closed under scalar multuplication by $1 / 2$.
6. Take $U=\{(x, 0) \mid x \in \mathbb{R}\} \cup\{(0, y) \mid y \in \mathbb{R}\} \subset \mathbb{R}^{2}$. It is nonempty and closed under scalar multiplication, but it is not a subspace since it is not closed under addition: $(1,1)=(1,0)+(0,1) \notin$ U even though $(1,0),(0,1) \in U$.
7. Let $U_{i} \subset V$, for $i \in I$, be a collection of subspaces. To see $\cap_{i \in I} U_{i} \subset V$ is a subspace we check:
(1) $\cap_{i \in I} U_{i}$ is closed under addition: if $u, v \in \cap_{i \in I} U_{i}$, then $u, v \in U_{i}$, for all $i \in I$. Thus $u+v \in U_{i}$, for all $i \in I$, and so $u+v \in \cap_{i \in I} U_{i}$.
(2) $\cap_{i \in I} U_{i}$ is closed under scalar multiplication: if $v \in \cap_{i \in I} U_{i}$, then $v \in U_{i}$, for all $i \in I$. Thus for any $a \in F$, we have $a v \in U_{i}$, for all $i \in I$, and so $a v \in \cap_{i \in I} U_{i}$.
(3) $\cap_{i \in I} U_{i}$ contains the additive identity 0 : we have $0 \in U_{i}$, for all $i \in I$, and so $0 \in \cap_{i \in I} U_{i}$.
8. Let $U_{1}, U_{2} \subset V$ be subspaces.

Suppose $U_{1} \subset U_{2}$. Then $U_{1} \cup U_{2}=U_{2}$ and so $U_{1} \cup U_{2}$ is a subspace.
Suppose $U_{2} \subset U_{1}$. Then $U_{1} \cup U_{2}=U_{1}$ and so $U_{1} \cup U_{2}$ is a subspace.
Conversely, suppose $U_{1} \not \subset U_{2}$ and $U_{2} \not \subset U_{1}$. Thus there exist vectors $u_{1} \in U_{1}, u_{1} \notin U_{2}$ and $u_{2} \in U_{2}, u_{2} \notin U_{1}$. Now let us prove that $U_{1} \cup U_{2}$ is not a subspace. We will show that $w=$ $u_{1}+u_{2} \notin U_{1} \cup U_{2}$ even though $u_{1}, u_{2} \in U_{1} \cup U_{2}$. Let us prove this by contradiction: so suppose $w=u_{1}+u_{2} \in U_{1} \cup U_{2}$. Then we have $w=u_{1}+u_{2} \in U_{1}$ or $w=u_{1}+u_{2} \notin U_{2}$. In the first case, we have $u_{2}=w-u_{1} \in U_{1}$ since $w, u_{1} \in U_{1}$; but $u_{2} \notin U_{1}$, a contradiction. In the second case, we have $u_{1}=w-u_{2} \in U_{2}$ since $w, u_{2} \in U_{2}$; but $u_{1} \notin U_{2}$, a contradiction.
13. Here is a counterexample disproving the statement. Take $V=\mathbb{R}^{2}, U_{1}=\{(x, 0)\}, U_{2}=\{(0, y)\}$, and $W=\{(t, t)\}$. Then $U_{1}+W=V=U_{2}+W$ but $U_{1} \neq U_{2}$.
14. Take $W=\left\{q(z)=c_{0}+c_{1} z+\cdots+c_{m} z^{m} \mid c_{2}=c_{5}=0\right\}$. Then clearly any polynomial $p(z)=a_{0}+a_{1} z+\cdots+a_{m} z^{m}$ can be written uniquely as a sum

$$
p(z)=q(z)+\left(a_{2} z^{2}+a_{5} z^{5}\right)
$$

where we set $q(z)=p(z)-a_{2} z^{2}+a_{5} z^{5}$.
15. Here is a counterexample disproving the statement. Take $V=\mathbb{R}^{2}, U_{1}=\{(x, 0)\}, U_{2}=\{(0, y)\}$, and $W=\{(t, t)\}$. Then $U_{1} \oplus W=V=U_{2} \oplus W$ but $U_{1} \neq U_{2}$.

Additional problem. Find all subspaces of \mathbb{R}^{2}.
Let $W \subset \mathbb{R}^{2}$ be a subspace. We will show that W is the zero subspace $\{0\}$, a line through the origin $\left\{a v \mid v \neq 0 \in \mathbb{R}^{2}\right\}$, or the whole vector space \mathbb{R}^{2}.

If W contains only 0 , then $W=\{0\}$ and we are done.
Else W contains some vector $v \neq 0$. Thus W contains the line $\left\{a v \mid v \neq 0 \in \mathbb{R}^{2}\right\}$.
If $W=\left\{a v \mid v \neq 0 \in \mathbb{R}^{2}\right\}$, then we are done.
Else W contains some vector $w \neq a v$. We will show that in this case we have $W=\mathbb{R}^{2}$. Take any vector $u \in \mathbb{R}^{2}$. We will show $u \in W$ by finding $c, d \in \mathbb{R}$ such that $u=c v+d w$. Write $u=\left(u_{1}, u_{2}\right)$, $v=\left(v_{1}, v_{2}\right)$, and $w=\left(w_{1}, w_{2}\right)$. Then we seek to solve the system

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{ll}
v_{1} & w_{1} \\
v_{2} & w_{2}
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

Since $v \neq 0$ and $w \neq a v$, we can solve the system by

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right]=\frac{1}{v_{1} w_{2}-w_{1} v_{2}}\left[\begin{array}{cc}
w_{2} & -w_{1} \\
-v_{2} & v_{1}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

