
Homework 13 Solutions

14. Define T ∈ L
(
C4
)

by T (ei) = 7ei for i = 1, 2 and T (ei) = 8ei for i = 3, 4, and extend
by linearity.

15. Since 5 and 6 are the only eigenvalues of T and because V is a vector space over C, it
follows that the characteristic polynomial for T has the form

pT (x) = (x− 5)a(x− 6)b

for some a, b ∈ N. Furthermore, it follows that a, b ≥ 1 since 5 and 6 must both have
algebraic multiplicity at least 1, and that a + b = n since pT has degree n. Thus,
a, b ≤ n − 1, and we can conclude that pT divides (x − 5)a(x − 6)b. Since pT (T ) = 0
by the Cayley Hamilton theorem, it follows that (T − 5I)n−1(T − 6I)n−1 = 0, since
(x− 5I)n−1(x− 6I)n−1 is also divisible by pT . .

16. Claim: V has a basis consisting of eigenvectors of T if and only if every generalized
eigenvector of T is an eigenvector of T .

proof: (⇐=). Assume that every generalized eigenvector of T is also an eigenvector
of T . Then by Theorem 8.25, there exists a basis β of V consisting of generalized
eigenvectors of T . Since by assumption every generalized eigenvector of T is actually
an eigenvector of T , this basis β is actually a basis of eigenvectors of T .

( =⇒ ). Conversely, for the other direction, Suppose V has a basis β = {v1, . . . , vn}
consisting of eigenvectors of T . That is Tvi = λivi for some λi not necessarily distinct.
Then if w ∈ V is a generalized eigenvector of T corresponding to the eigenvalue λ, there
exists constants c1, . . . , cn ∈ C such that w = c1v1 + · · · cnvn. Furthermore, since w is
a generalized eigenvector of T , (T − λ)nw = 0. Hence,

0 = (T − λI)nw = (λ1 − λ)nc1v1 + · · ·+ (λn − λ)ncnvn.

which implies that (λi − λ)nci = 0 for all i. So if ci 6= 0, then it must be the case that
λi = λ. It follows then that w is a linear combination of vectors in Eλ(T ), and thus an
eigenvector of T .

17. This follows directly from an application of theorem 8.26 followed by an application of
theorem 6.27/

21. Let T ∈ L(C3). be defined by T (e1) = 0, T (e2) = e1, T (e3) = 0 and extend by linearity.
Then T 2 = 0, but T 6= 0, so it follows that the min polynomial of T is z2.

22. Let T ∈ L(C4) be given by T (e1) = e1, T (e2) = e1 + e2 and T (e3) = T (e4) = 0 and
extend by linearity. Then

[T ] =


1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0


Since 1 and 0 are the eigenvalues of T , we know the min polynomial of T must be of
the form mT (z) = za(z − 1)b for a, b ≥ 1. One can check that T (T − I)2 = 0, but
T (T − 1) 6= 0 since T (T − I)e2 = e1. so it follows that mT (z) = z(z − 1)2.

23. Suppose V is a vector space over C and let T ∈ L(V ). Claim: V has a basis consisting
of eigenvalues of T if and only if the min polynomial of of T has no repeated roots.
Proof: ( =⇒ ) Suppose λ1, . . . λk are the distinct eigenvalues of T and that V has a basis
consisting of eigenvectors of T . We will show that the min polynomial of T , mT (x) =
(x − λ1) . . . (x − λk). Now let {v1, . . . , vn} be a basis of V consisting of eigenvectors
of T . Then if i ∈ {1, . . . , n}, Tvi = λlvi for some l ∈ {1, . . . k}. Since (T − λiI) and



(T − λjI commute for any i and j, so it follows that (T − λ1I) . . . (T − λkI)vi = 0.
Thus (T − λ1I) . . . (T − λkI) = 0 since it is equal to 0 on a basis of V . This implies
that mT (x)|(x − λ1) . . . (x − λk). Furthermore, mT must divide (x − λ1) . . . (x − λk),
because the eigenvalues of T are roots of mT . Since two monic polynomials that divide
each other must be equal, it follows that mT (x) = (x − λ1) . . . (x − λk) as desired.
(⇐=) Conversely, assume mT (x) = (x− λ1) . . . (x− λk), where again λ1, . . . λk are the
distinct eigenvalues of T . We know that V is a direct sum of the generalized eigenspaces:
Gλi := Gλi(T ). So we are done if we can show that each generalized eigenspace of T
is actually equal to the corresponding eigenspace. This is equivalent to showing that
(T − λiI)|Gλi = T |Gλi − λiI = 0 i.e. that Gλi ⊆ null(T − λiI). Now, we know that
mT (T ) = (T − λ1I) . . . (T − λkI) = 0, and thus (T |Gλi − λ1I) . . . (T |Gλi − λkI) = 0
for each i. Because Gλi is T -invariant, and λj is not an eigenvalue of T |Gλi when
j 6= i, it follows that (T |Gλi − λjI) is invertible as an operator on Gλi for j 6= i. If

we multiply both sides of the equation by (T |Gλi − λjI)−1, for each j 6= i, this implies
that (T |Gλi − λiI) = 0 as desired.

24. Suppose T is normal, and the min polynomial of T is given by mT (z) = (z − λ)kp(z)
where p(λ) 6= 0. That is λ is repeated as a root k times in mT . We will show that
(T −λI)p(T ) = 0, which is a monic polynomial that zeros T and divides mT , and hence
must equal T . This will show that k = 1. To do this, not that

0 = mT (T ) = (T − λI)kp(T )

which shows that range p(T ) ⊆ null(T − λI)k. Now T − λI is normal because T is
and in exercise 7 of chapter 7 we showed that null(T − λI)k = null(T − λI), so range
p(T ) ⊆ null(T − λI), and hence (T − λI)p(T ) = 0, which is what we wanted to show.

.

25. Suppose p(T ) is the monic polynomial of smallest degree such that p(T )v = 0 for some
v ∈ V . Let mT denote the min polynomial of T . By the division algorithm, there exists
polynomials d and r with degr < degp such that

mT = pd+ r

since mT = 0, mT (v) = 0, so 0 = mT (v) = p(T )d(T )v + r(T )v = 0 + r(T )v. so
r(T )v = 0, which implies that r(T ) = 0, otherwise this would be a polynomial of
degree less than degp that sends v to 0, which would contradict our assumption. Hence
mT = pd which shows that P divides mT . .

26. A useful fact when finding an example for this problem is that the degree of (x − λ)
in the min polynomial of T is the size of the largest Jordan block corresponding to the
eigenvalue λ. Hence we want the Jordan canonical form J of T to be of the form

J =


1 1 0 0
0 1 0 0
0 0 3 0
0 0 0 0


That is J has Jordan blocks of size 1 for the eigenvalues 0 and 3, and a Jordan block of
size 2 for the eigenvalue 1. A linear transformation that has this Jordan canonical form
is given by T (e1) = e1, T (e2) = e1 + e2, T (e3) = 3e3 and T (e4) = 0. Then [T ] = J .
Then mT must be divisible by x(x− 3)(x− 1) since 0,1 and 3 are all eigenvalues of T .
It is easy to check that T (T − I)(T − 3I) 6= 0, however T (T − I)2(T − 3I) = 0, which
shows that mT (z) = z(z − 3)(z − 1)2.

27. T will have minpolynomial mT (z) = z(z − 1)(z − 3) if and only if the eigenvalues of T
are 0, 1, 3, and the Jordan blocks of T all have size 1 (see the comment in the solution



to problem 26.). In other words, T must be diagonalizable. In order for pT (z) =
z(z− 1)2(z− 3), 1 must have algebraic multiplicity 2, and hence geometric multiplicity
2 since T is diagonalizable. One can check that T meets the above conditions where
T (e1) = e1, T (e2) = e2, T (e3) = 3e3 and T (e4) = 0. This is easy to verify because [T ]
is given by the diagonal matrix with 1, 1, 3, 0 down the main diagonal.

28. Choose T ∈ L(Cn) so that [T ] equals the matrix shown in the problem. That is
T (ei) = ei+1 for i = 1, . . . , n − 1 and T (en) = −a0e1 − a1e2 − · · · − an−1en. Hence,
T i(e1) = ei+1, for i = 1, . . . , n − 1, and Tn(e1) = Ten. Thus {e1, T e1, . . . , Tn−1e1} is
linearly independent, so in particular, p(T )e1 6= 0 for all monic polynomials p of degree
less than n. So mT has degree n, hence mT = pT . Furthermore, from the equations
above, Tn(e1) = −an−1T

n−1e1 − · · · − a1Te1 − a0. The ai given are unique by the
independence of the vectors T i(e1) for i = 1, . . . , n− 1, so p(z) = a0 + a1z+ · · ·+ anz

n

is the only monic degree n polynomial that sends e1 to 0. since pT is a monic polynomial
of degree n that sends e1 to 0, it follows that pT = p. .


