Homework 13 Solutions

14. Define $T \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ by $T\left(e_{i}\right)=7 e_{i}$ for $i=1,2$ and $T\left(e_{i}\right)=8 e_{i}$ for $i=3,4$, and extend by linearity.
15. Since 5 and 6 are the only eigenvalues of T and because V is a vector space over \mathbb{C}, it follows that the characteristic polynomial for T has the form

$$
p_{T}(x)=(x-5)^{a}(x-6)^{b}
$$

for some $a, b \in \mathbb{N}$. Furthermore, it follows that $a, b \geq 1$ since 5 and 6 must both have algebraic multiplicity at least 1 , and that $a+b=n$ since p_{T} has degree n. Thus, $a, b \leq n-1$, and we can conclude that p_{T} divides $(x-5)^{a}(x-6)^{b}$. Since $p_{T}(T)=0$ by the Cayley Hamilton theorem, it follows that $(T-5 I)^{n-1}(T-6 I)^{n-1}=0$, since $(x-5 I)^{n-1}(x-6 I)^{n-1}$ is also divisible by p_{T}.
16. Claim: V has a basis consisting of eigenvectors of T if and only if every generalized eigenvector of T is an eigenvector of T.
proof: (\Longleftarrow). Assume that every generalized eigenvector of T is also an eigenvector of T. Then by Theorem 8.25, there exists a basis β of V consisting of generalized eigenvectors of T. Since by assumption every generalized eigenvector of T is actually an eigenvector of T, this basis β is actually a basis of eigenvectors of T.
(\Longrightarrow). Conversely, for the other direction, Suppose V has a basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ consisting of eigenvectors of T. That is $T v_{i}=\lambda_{i} v_{i}$ for some λ_{i} not necessarily distinct. Then if $w \in V$ is a generalized eigenvector of T corresponding to the eigenvalue λ, there exists constants $c_{1}, \ldots, c_{n} \in \mathbb{C}$ such that $w=c_{1} v_{1}+\cdots c_{n} v_{n}$. Furthermore, since w is a generalized eigenvector of $T,(T-\lambda)^{n} w=0$. Hence,

$$
0=(T-\lambda I)^{n} w=\left(\lambda_{1}-\lambda\right)^{n} c_{1} v_{1}+\cdots+\left(\lambda_{n}-\lambda\right)^{n} c_{n} v_{n}
$$

which implies that $\left(\lambda_{i}-\lambda\right)^{n} c_{i}=0$ for all i. So if $c_{i} \neq 0$, then it must be the case that $\lambda_{i}=\lambda$. It follows then that w is a linear combination of vectors in $E_{\lambda}(T)$, and thus an eigenvector of T
17. This follows directly from an application of theorem 8.26 followed by an application of theorem 6.27/
21. Let $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$. be defined by $T\left(e_{1}\right)=0, T\left(e_{2}\right)=e_{1}, T\left(e_{3}\right)=0$ and extend by linearity. Then $T^{2}=0$, but $T \neq 0$, so it follows that the min polynomial of T is z^{2}.
22. Let $T \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ be given by $T\left(e_{1}\right)=e_{1}, T\left(e_{2}\right)=e_{1}+e_{2}$ and $T\left(e_{3}\right)=T\left(e_{4}\right)=0$ and extend by linearity. Then

$$
[T]=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since 1 and 0 are the eigenvalues of T, we know the min polynomial of T must be of the form $m_{T}(z)=z^{a}(z-1)^{b}$ for $a, b \geq 1$. One can check that $T(T-I)^{2}=0$, but $T(T-1) \neq 0$ since $T(T-I) e_{2}=e_{1}$. so it follows that $m_{T}(z)=z(z-1)^{2}$.
23. Suppose V is a vector space over \mathbb{C} and let $T \in \mathcal{L}(V)$. Claim: V has a basis consisting of eigenvalues of T if and only if the min polynomial of of T has no repeated roots. Proof: (\Longrightarrow) Suppose $\lambda_{1}, \ldots \lambda_{k}$ are the distinct eigenvalues of T and that V has a basis consisting of eigenvectors of T. We will show that the min polynomial of $T, m_{T}(x)=$ $\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$. Now let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V consisting of eigenvectors of T. Then if $i \in\{1, \ldots, n\}, T v_{i}=\lambda_{l} v_{i}$ for some $l \in\{1, \ldots k\}$. Since $\left(T-\lambda_{i} I\right)$ and
$\left(T-\lambda_{j} I\right.$ commute for any i and j, so it follows that $\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{k} I\right) v_{i}=0$. Thus $\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{k} I\right)=0$ since it is equal to 0 on a basis of V. This implies that $m_{T}(x) \mid\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$. Furthermore, m_{T} must divide $\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$, because the eigenvalues of T are roots of m_{T}. Since two monic polynomials that divide each other must be equal, it follows that $m_{T}(x)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$ as desired. (\Longleftarrow) Conversely, assume $m_{T}(x)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$, where again $\lambda_{1}, \ldots \lambda_{k}$ are the distinct eigenvalues of T. We know that V is a direct sum of the generalized eigenspaces: $G_{\lambda_{i}}:=G_{\lambda_{i}}(T)$. So we are done if we can show that each generalized eigenspace of T is actually equal to the corresponding eigenspace. This is equivalent to showing that $\left.\left(T-\lambda_{i} I\right)\right|_{G_{\lambda_{i}}}=\left.T\right|_{G_{\lambda_{i}}}-\lambda_{i} I=0$ i.e. that $G_{\lambda_{i}} \subseteq \operatorname{null}\left(T-\lambda_{i} I\right)$. Now, we know that $m_{T}(T)=\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{k} I\right)=0$, and thus $\left(\left.T\right|_{G_{\lambda_{i}}}-\lambda_{1} I\right) \ldots\left(\left.T\right|_{G_{\lambda_{i}}}-\lambda_{k} I\right)=0$ for each i. Because $G_{\lambda_{i}}$ is T-invariant, and λ_{j} is not an eigenvalue of $\left.T\right|_{G_{\lambda_{i}}}$ when $j \neq i$, it follows that $\left(\left.T\right|_{G_{\lambda_{i}}}-\lambda_{j} I\right)$ is invertible as an operator on $G_{\lambda_{i}}$ for $j \neq i$. If we multiply both sides of the equation by $\left(\left.T\right|_{G_{\lambda_{i}}}-\lambda_{j} I\right)^{-1}$, for each $j \neq i$, this implies that $\left(\left.T\right|_{G_{\lambda_{i}}}-\lambda_{i} I\right)=0$ as desired.
24. Suppose T is normal, and the min polynomial of T is given by $m_{T}(z)=(z-\lambda)^{k} p(z)$ where $p(\lambda) \neq 0$. That is λ is repeated as a root k times in m_{T}. We will show that $(T-\lambda I) p(T)=0$, which is a monic polynomial that zeros T and divides m_{T}, and hence must equal T. This will show that $k=1$. To do this, not that

$$
0=m_{T}(T)=(T-\lambda I)^{k} p(T)
$$

which shows that range $p(T) \subseteq \operatorname{null}(T-\lambda I)^{k}$. Now $T-\lambda I$ is normal because T is and in exercise 7 of chapter 7 we showed that $\operatorname{null}(T-\lambda I)^{k}=\operatorname{null}(T-\lambda I)$, so range $p(T) \subseteq \operatorname{null}(T-\lambda I)$, and hence $(T-\lambda I) p(T)=0$, which is what we wanted to show.
25. Suppose $p(T)$ is the monic polynomial of smallest degree such that $p(T) v=0$ for some $v \in V$. Let m_{T} denote the min polynomial of T. By the division algorithm, there exists polynomials d and r with $\operatorname{deg} r<\operatorname{deg} p$ such that

$$
m_{T}=p d+r
$$

since $m_{T}=0, m_{T}(v)=0$, so $0=m_{T}(v)=p(T) d(T) v+r(T) v=0+r(T) v$. so $r(T) v=0$, which implies that $r(T)=0$, otherwise this would be a polynomial of degree less than $\operatorname{deg} p$ that sends v to 0 , which would contradict our assumption. Hence $m_{T}=p d$ which shows that P divides m_{T}.
26. A useful fact when finding an example for this problem is that the degree of $(x-\lambda)$ in the min polynomial of T is the size of the largest Jordan block corresponding to the eigenvalue λ. Hence we want the Jordan canonical form J of T to be of the form

$$
J=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

That is J has Jordan blocks of size 1 for the eigenvalues 0 and 3 , and a Jordan block of size 2 for the eigenvalue 1. A linear transformation that has this Jordan canonical form is given by $T\left(e_{1}\right)=e_{1}, T\left(e_{2}\right)=e_{1}+e_{2}, T\left(e_{3}\right)=3 e_{3}$ and $T\left(e_{4}\right)=0$. Then $[T]=J$. Then m_{T} must be divisible by $x(x-3)(x-1)$ since 0,1 and 3 are all eigenvalues of T. It is easy to check that $T(T-I)(T-3 I) \neq 0$, however $T(T-I)^{2}(T-3 I)=0$, which shows that $m_{T}(z)=z(z-3)(z-1)^{2}$.
27. T will have minpolynomial $m_{T}(z)=z(z-1)(z-3)$ if and only if the eigenvalues of T are $0,1,3$, and the Jordan blocks of T all have size 1 (see the comment in the solution
to problem 26.). In other words, T must be diagonalizable. In order for $p_{T}(z)=$ $z(z-1)^{2}(z-3), 1$ must have algebraic multiplicity 2 , and hence geometric multiplicity 2 since T is diagonalizable. One can check that T meets the above conditions where $T\left(e_{1}\right)=e_{1}, T\left(e_{2}\right)=e_{2}, T\left(e_{3}\right)=3 e_{3}$ and $T\left(e_{4}\right)=0$. This is easy to verify because $[T]$ is given by the diagonal matrix with $1,1,3,0$ down the main diagonal.
28. Choose $T \in \mathcal{L}\left(\mathbb{C}^{n}\right)$ so that $[T]$ equals the matrix shown in the problem. That is $T\left(e_{i}\right)=e_{i+1}$ for $i=1, \ldots, n-1$ and $T\left(e_{n}\right)=-a_{0} e_{1}-a_{1} e_{2}-\cdots-a_{n-1} e_{n}$. Hence, $T^{i}\left(e_{1}\right)=e_{i+1}$, for $i=1, \ldots, n-1$, and $T^{n}\left(e_{1}\right)=T e_{n}$. Thus $\left\{e_{1}, T e_{1}, \ldots, T^{n-1} e_{1}\right\}$ is linearly independent, so in particular, $p(T) e_{1} \neq 0$ for all monic polynomials p of degree less than n. So m_{T} has degree n, hence $m_{T}=p_{T}$. Furthermore, from the equations above, $T^{n}\left(e_{1}\right)=-a_{n-1} T^{n-1} e_{1}-\cdots-a_{1} T e_{1}-a_{0}$. The a_{i} given are unique by the independence of the vectors $T^{i}\left(e_{1}\right)$ for $i=1, \ldots, n-1$, so $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ is the only monic degree n polynomial that sends e_{1} to 0 . since p_{T} is a monic polynomial of degree n that sends e_{1} to 0 , it follows that $p_{T}=p$.

