Homework 12 Solutions

1. Clearly $T^{2}=0$, so every $(w, z) \in \mathbb{C}^{2}$ is a generalized eigenvector of T.
2. Elementary calculations show that the eigenvalues of T are $i,-i$ and that corresponding eigenvectors are $(1,-i),(1, i)$, respectively. Since these span \mathbb{C}^{2}, the only generalized eigenvectors are $\operatorname{Span}((1,-i)) \cup$ $\operatorname{Span}((1, i))$.
3. Suppose we have scalars $c_{0}, c_{1}, \ldots, c_{m-1}$ such that $c_{0} v+c_{1} T v+\ldots+$ $c_{m-1} T^{m-1} v=0$. Apply T^{m-1} to both sides to obtain that $c_{0} T^{m-1} v=0$. Since $T^{m-1} v \neq 0$, we conclude that $c_{0}=0$.

Suppose now we have shown that $c_{0}=c_{1}=\ldots=c_{j-1}=0$ for some j. Then we have $c_{j} T^{j} v+c_{j+1} T^{j+1} v+\ldots+c_{m-1} T^{m-1} v=0$ Apply T^{m-j-1} to both sides to obtain $c_{j} T^{m-1} v=0$, whence $c_{j}=0$.
4. Note that $T^{3}=0$, but $T^{2} \neq 0$. Suppose we had $S \in \mathcal{L}(V)$ such that $S^{2}=T$. Then we would have $S^{6}=T^{3}=0$, so S is nilpotent. Thus, $S^{\operatorname{dim} \mathbb{C}^{3}}=S^{3}=0$, so also $T^{2}=S^{4}=0$, a contradiction.
5. Choose k such that $(S T)^{k}=0$. Then $(T S)^{k+1}=T(S T)^{k} S=0$.
6. Choose k such that $N^{k}=0$, let λ be an eigenvalue of N, and let v be a corresponding nonzero eigenvector. Then $\lambda^{k} v=N^{k} v=0$, whence $\lambda=0$.
7. Trivial consequence of 6 and the Spectral Theorem
10. Any nonzero nilpotent operator $N \in \mathcal{L}(V)$ satisfies null $N \cap$ range $N \neq$ $\{0\}$, so it cannot happen that $V=$ null $N \oplus$ range N.
11. First, note that Rank-Nullity guarantees that $\operatorname{dim} V=\operatorname{dim} n u l l T^{n}+$ dim range T^{n}, so we need only show that null $T^{n} \cap$ range $T^{n}=\{0\}$.

Let v be some vector in null $T^{n} \cap \operatorname{range} T^{n}$. Since $v \in \operatorname{range} T^{n}$, we may choose some w such that $v=T^{n} w$. Since $v \in \operatorname{null} T^{n}$, we have that $T^{2 n} w=T^{n} v=0$, so $w \in \operatorname{null} T^{2 n}$. But by Proposition 8.6, $\operatorname{null} T^{2 n}=\operatorname{null} T^{n}$, so $v=T^{n} w=0$.
12. Put N into upper-triangular form. Then N has all 0 's on the diagonal. Clearly any such matrix is nilpotent; hence, so is N.
For a counterexample on a real vector space, consider the operator on \mathbb{R}^{3} whose matrix with respect to the standard basis is

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

13. Arguing as in the proof of Proposition 8.6, we see that $\operatorname{dim} T^{n-1} \geq n-1$. Since generalized eigenvectors corresponding to distinct eigenvalues are linearly independent, there is room for at most one more eigenvalue.
