Homework 11 Solutions. Math 110, Fall 2013.

1. a) Suppose that T were self-adjoint. Then, the Spectral Theorem tells us that there would exist an orthonormal basis of $P_2(\mathbb{R})$, (p_1, p_2, p_3) , consisting of eigenvectors of T. It is straightforward to see, by inspection of T, that the eigenvalues of T are $\lambda = 0, 1$ and that

$$T(v) = 0 \iff v \in \operatorname{null}(T) = \{a_0 + a_2 x^t \mid a_0, a_2 \in R\},$$
$$T(v) = v \iff v \in \operatorname{span}(x).$$

Thus, we have $p_1, p_2 \in \text{null}(T)$, with $\langle p_1, p_2 \rangle = 0$ and $||p_1|| = ||p_2|| = 1$. The remaining eigenvector p_3 must be an element of span(x), so that $p_3 = cx$, for some (nonzero) $c \in \mathbb{R}$ such that $||p_3|| = 1$. Moreover, we would require that $\text{null}(T) \subset \text{span}(x)^{\perp}$, since eigenvectors associated to distinct eigenvalues are orthogonal. Therefore, $\text{null}(T) = \text{span}(x)^{\perp}$, by dimension considerations (dim span(x)^{\perp} = dim P_2 - dim span(x) = 3 - 1 - 2).

However, if $p = a_0 + a_2 x^2 \in \operatorname{span}(x)^{\perp}$ then

$$0 = \langle a_0 + a_2 x^2, x \rangle = \int_0^1 (a_0 + a_2 x^2) x \ dx = \frac{1}{4} (2a_0 + a_2) \implies a_2 = -2a_0$$

so that $p = a_0(1 - 2x^2)$. That is, we have shown that $\text{span}(1 - 2x^2) = \text{span}(x)^{\perp} \cap \text{null}(T) = \text{null}(T)$, since $\text{null}(T) = \text{span}(x)^{\perp}$. Then, we would have

$$2 = \operatorname{dim} \operatorname{null}(T) = \operatorname{dim} \operatorname{span}(1 - 2x^2) = 1$$

which is absurd. Hence, our assumption that T is self-adjoint is false.

b) Theorem 6.47 requires that the matrix of T^* (relative to $C \subset W$ and $B \subset V$) is the conjugate transpose of the matrix of T (relative to $B \subset V$ and $C \subset W$) if both B and C are orthonormal. However, the basis $B = C = (1, x, x^2)$ of P_2 is not orthonormal (with respect to the given inner product) so that we are not contradicting Theorem 6.47. If we chose an orthonormal basis of P_2 , call it A (obtained by Gram-Schmidt process on $(1, x, x^2)$, for example), then we would find $[T]_A \neq \overline{[T]}_A^t$.

2. This is false. This would imply that the matrices A, B of two self-adjoint operators T, S (relative to an orthonormal basis) would satisfy

$$(AB)^* = AB$$

where for a square matrix C we are writing $C^* = \overline{C}^t$. However, $(AB)^* = B^*A^* = BA$, since T, S are self-adjoint. So, we need to only find two non-commuting self adjoint operators - we can take the following operators on Euclidean space \mathbb{C}^2

$$T: \mathbb{C}^2 \to \mathbb{C}^2 ; \underline{x} \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \underline{x}, \quad S: \mathbb{C}^2 \to \mathbb{C}^2 ; \underline{x} \mapsto \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \underline{x}$$

You can check that $TS(e_1) \neq ST(e_1)$, where $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

3. a) Let $T, S \in L(V)$, be self-adjoint operators on V, a real inner product space. Then, the zero operator on $V, Z : V \to V$; $v \mapsto 0_V$ is self-adjoint; we have $(T+S)^* = T^*+S^* = T+S$, so that T+S is self-adjoint; if $c \in \mathbb{R}$ then $(cT)^* = \overline{c}T^* = cT$, so that cT is self-adjoint. Hence, the set of self-adjoint operators on a real inner product space is a subspace of L(V).

b) If T is self-adjoint operator on the complex inner product space V, then $(\sqrt{-1}T)^* = \sqrt{-1}T^* = -\sqrt{-1}T \neq \sqrt{-1}T$. Hence, the set of self-adjoint operators is not closed under scalar multiplication.

4. Let $P \in L(V)$ be such that $P^2 = P$.

(⇒) Suppose that P is an orthogonal projection. Then, range(P) = null(P)[⊥]. Moreover, the only eigenvalues of P are $\lambda = 0, 1$ (this was proved in a previous HW exercise) and

$$P(v) = v \Leftrightarrow v \in \operatorname{range}(P)$$

(this is true of any projection) so that range(P) consists of eigenvectors with eigenvalue $\lambda = 1$. Hence, we can find an orthonormal basis (u_1, \ldots, u_k) of range(P) (using Gram-Schmidt applied to any basis of range(P)) and an orthonormal basis (v_1, \ldots, v_l) of null(P) (using Gram-Schmidt applied to any basis of null(P)). Then, $(u_1, \ldots, u_k, v_1, \ldots, v_l)$ is an orthonormal basis of V consisting of eigenvectors of P. Hence, if V is a real inner product space then P is self-adjoint, by the Spectral Theorem. If V is complex inner product space then, for any $v \in V$, we can write v = u + z, $u \in \text{range}(P)$, $z \in \text{null}(P)$ so that

$$\langle P(v), v \rangle = \langle u, u + z \rangle = \langle u, u \rangle + \langle u, z \rangle = ||u||^2 + 0 \in \mathbb{R}$$

Hence, P is self-adjoint when V is complex inner product space.

 (\Rightarrow) Suppose that P is self-adjoint. Then, we have null(P) = null(P^{*} and

$$\mathsf{range}(P) = \mathsf{null}(P^*)^\perp = \mathsf{null}(P)^\perp \implies V = \mathsf{null}(P) \oplus \mathsf{null}(P)^\perp = \mathsf{null}(P) \oplus \mathsf{range}(P)$$

Since P is self-adjoint then there is a basis of V consisting of orthonormal vectors of P call it $(u_1, ..., u_k, v_1, ..., v_l)$, where $P(u_i) = 0_V$ and $P(v_i) \neq 0_V$. Hence, dim null(P) = k (ie, we are saying that the u's are an o.n. basis of null(P)) and, since span $(v_1, ..., v_l) \subset$ null(P)[⊥] = range(P) and dim range(P) = dim V - dim null(P) = (k + l) - k = l, we see that span $(v_1, ..., v_l)$ = range(P). Thus, $(v_1, ..., v_l)$ is an orthonormal basis of range(P) consisting of eigenvectors of P with nonzero associated eigenvalues. As we are assuming that $P^2 = P$, we must have that the only eigenvalues of P are $\lambda = 0, 1$, so that the only nonzero eigenvalue is $\lambda = 1$. Hence, for every $u \in \text{range}(P)$ we have P(u) = u. Thus, since we can write v = z + u, with $z \in \text{null}(P), u \in \text{range}(P)$, we see that

$$P(v) = P(z + u) = P(z) + P(u) = 0_V + u$$

so that P is a projection onto range(P) with $null(P) = range(P)^{\perp}$ - hence, it is an orthogonal projection.

5. Let V be an inner product space, take $(v_1, ..., v_n)$ an orthonormal basis of V (so that $n \ge 2$). Consider the normal operators $T, S \in L(V)$ defined as follows:

$$T(v_1) = 3v_1, \ T(v_2) = v_2, \ T(v_i) = 0_V, \ i \ge 3,$$

 $S(v_1) = v_2, \ S(v_2) = -v_1, \ S(v_i) = 0_V, \ i \ge 3.$

Then, the $(n \times n)$ matrices of T, S with respect to the given basis are

$$A = \begin{bmatrix} 3 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Since, $A = \overline{A}^t$, we have $T = T^*$, and as $B\overline{B}^t = \overline{B}^t B$, we have $SS^* = S^*S$, giving that both T and S are normal.

Now, we see that the matrix of T + S is

$$A + B = \begin{bmatrix} 3 & -1 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

and this last matrix is not diagonalisable (so that T + S is not diaagonalisable: indeed, the eigenvalues of T + S are $\lambda = 0, 2$ and

$$\operatorname{null}(T+S) = \operatorname{span}(v_3, \dots, v_n)$$

while the $\lambda = 2$ eigenspace is span($v_1 + v_2$). If T + S were to be diagonalisable then we would need to have two linearly independent eigenvectors with eigenvalue $\lambda = 2$, which obviously can't be the case. Hence, T + S is not normal (it isn't diagonalisable).

6. Let $T \in L(V)$ be normal. Then, we must have that $null(T) = null(T^*)$ (this is at the top of p.131). Hence,

$$\operatorname{range}(T) = \operatorname{null}(T^*)^{\perp} = \operatorname{null}(T)^{\perp} = \operatorname{range}(T^*).$$

7. There are a couple of ways to proceed:

Proof I) Let B be an orthonormal basis of V consisting of eigenvectors of T (it exists by the Spectral Theorem). Then, we have the matrix of T relative to B is

$$[T]_B = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{bmatrix}$$

where $\lambda_1, ..., \lambda_n$ are eigenvalues of T (counted with multiplicity). Let's suppose that $\lambda_1 = ... = \lambda_k = 0$, and $\lambda_i \neq 0$, for i > k. Thus, dim null(T) = k. Now, for any $j \ge 1$ we have

$$[T^{j}]_{B} = [T]_{B}^{j} = [T]_{B} = \begin{bmatrix} \lambda_{1}^{j} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_{n}^{j} \end{bmatrix}$$

and $\lambda_r^j = 0 \implies \lambda_r = 0 \implies r \in \{1, ..., k\}$. Hence, $\operatorname{null}(T^j) = \operatorname{span}(v_1, ..., v_k) = \operatorname{null}(T)$, for each $j \ge 1$.

Now, since, for each $j \ge 1$,

dim range(T) = dim V - dim null(T) = dim V - dim null(T^{j}) = dim range(T^{j})

and range(T^j) \subset range(T), we see that range(T) = range(T^j) follows from null(T) = null(T^j).

Proof II) As T is normal then we have null(T) = null(T^*) (see p.131). Hence, we have

$$\operatorname{range}(T) = \operatorname{null}(T^*)^{\perp} = \operatorname{null}(T)^{\perp} \implies V = \operatorname{null}(T) \oplus \operatorname{range}(T)$$

In particular, $\operatorname{null}(T) \cap \operatorname{range}(T) = \{0\}$. Let's prove $\operatorname{null}(T^j) = \operatorname{null}(T)$, for every $j \ge 1$, by induction: the case j = 1 is trivial. Assume the result hold for j = s - we'll show it holds for j = s + 1. Since $\operatorname{null}(T) \subset \operatorname{null}(T^{s+1})$ always holds, we need only show that $\operatorname{null}(T) \supset \operatorname{null}(T^{s+1})$. So, let $z \in \operatorname{null}(T^{s+1})$. Then,

$$0 = T^{s+1}(z) = T(T^s(z)) \implies T^s(z) \in \operatorname{null}(T) \cap \operatorname{range}(T) = \{0\}$$
$$\implies z \in \operatorname{null}(T^s) = \operatorname{null}(T), \text{ by induction.}$$

Hence, $\operatorname{null}(T^{s+1}) \subset \operatorname{null}(T)$ and the result is proved.

8. The requirements on T imply that the vectors (1, 2, 3) and (2, 5, 7) are eigenvectors of T. However, with respect to the dot product on \mathbb{R}^3 , we see that

$$(1, 2, 3) \cdot (2, 5, 7) = 2 + 10 + 21 = 33 \neq 0$$

so that eigenvectors corresponding to distinct eigenvalues are not orthogonal, contradicting Corollary 7.8.

9. (\Rightarrow) Suppose that T is self-adjoint. Then, by Proposition 7.1 we see that all eigenvalues of T are real.

(\Leftarrow) Suppose that all eigenvalues of the normal operator T are real. Then, by the (complex) Spectral Theorem, we can find an orthonormal basis B of V consisting of eigenvectors of T. Hence, we have the matrix of T relative to B is

$$[T]_B = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}, \text{ where } \lambda_1, \dots, \lambda_n \in \mathbb{R}.$$

Then, we have that

$$[T^*]_B = \overline{[T]}_B^t = [T]_B \implies T = T^*.$$

Hence, T is self-adjoint.

10. Since T is normal, there is an orthonormal basis B of V consisting of eigenvectors of T. Then, we have

$$[T]_B = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}, \text{ and } [T^i]_B = \begin{bmatrix} \lambda_1^i & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^i \end{bmatrix}$$

Hence, if $T^8 = T^9$ then we must have

$$[\mathcal{T}^8]_B = \begin{bmatrix} \lambda_1^8 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n^8 \end{bmatrix} = \begin{bmatrix} \lambda_1^9 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n^9 \end{bmatrix} = [\mathcal{T}^9]_B$$

so that, foe each i = 1, ..., n

$$\lambda_i^8 = \lambda_i^9 \implies \lambda_i^8 (1 - \lambda_i) = 0$$

In particular, each eigenvalue λ_i is either equal to 1 or 0. Since the eigenvalues of T are real then T is self-adjoint (by previous exercise). Moreover, if we assume that $\lambda_1 = \cdots = \lambda_k = 0$ and $\lambda_{k+1} = \ldots = \lambda_n = 1$ then we have

$$[T]_B = \begin{bmatrix} \lambda_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} = [T]_B$$

so that $T^2 = T$.

11. Let T be normal and $B = (v_1, ..., v_n)$ be an orthonormal basis of V consisting of eigenvectors of T. Suppose that

$$[T]_B = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{bmatrix}$$

Then, by the Fundamental Theorem of Algebra, we can find a (complex) square root of λ_i , for each i = 1, ..., n. Suppose that $\mu_i^2 = \lambda_i$, for each i. Then, define the operators $S \in L(V)$ as follows:

$$S(v_1) = \mu_1 v_1, ..., S(v_n) = \mu_n v_n$$

Then, we have

$$[S^{2}]_{B} = \begin{bmatrix} \mu_{1}^{2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mu_{n}^{2} \end{bmatrix} = \begin{bmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{bmatrix} = [T]_{B} \implies S^{2} = T.$$