
Homework 11 Solutions. Math 110, Fall 2013.

1. a) Suppose that T were self-adjoint. Then, the Spectral Theorem tells us that there
would exist an orthonormal basis of P2(R), (p1, p2, p3), consisting of eigenvectors of T . It is
straightforward to see, by inspection of T , that the eigenvalues of T are λ = 0, 1 and that

T (v) = 0 ⇔ v ∈ null(T ) = {a0 + a2x
t | a0, a2 ∈ R},

T (v) = v ⇔ v ∈ span(x).

Thus, we have p1, p2 ∈ null(T ), with 〈p1, p2〉 = 0 and ||p1|| = ||p2|| = 1. The remaining
eigenvector p3 must be an element of span(x), so that p3 = cx , for some (nonzero) c ∈ R
such that ||p3|| = 1. Moreover, we would require that null(T ) ⊂ span(x)⊥, since eigenvectors
associated to distinct eigenvalues are orthogonal. Therefore, null(T ) = span(x)⊥, by dimension
considerations (dim span(x)⊥ = dimP2 − dim span(x) = 3− 1− 2).

However, if p = a0 + a2x
2 ∈ span(x)⊥ then

0 = 〈a0 + a2x
2, x〉 =

∫ 1

0
(a0 + a2x

2)x dx =
1

4
(2a0 + a2) =⇒ a2 = −2a0

so that p = a0(1− 2x2). That is, we have shown that span(1− 2x2) = span(x)⊥ ∩ null(T ) =
null(T ), since null(T ) = span(x)⊥. Then, we would have

2 = dim null(T ) = dim span(1− 2x2) = 1

which is absurd. Hence, our assumption that T is self-adjoint is false.

b) Theorem 6.47 requires that the matrix of T ∗ (relative to C ⊂W and B ⊂ V ) is the conjugate
transpose of the matrix of T (relative to B ⊂ V and C ⊂W ) if both B and C are orthonormal.
However, the basis B = C = (1, x , x2) of P2 is not orthonormal (with respect to the given inner
product) so that we are not contradicting Theorem 6.47. If we chose an orthonormal basis of
P2, call it A (obtained by Gram-Schmidt process on (1, x , x2), for example), then we would

find [T ]A 6= [T ]
t

A.

2. This is false. This would imply that the matrices A,B of two self-adjoint operators T ,S
(relative to an orthonormal basis) would satisfy

(AB)∗ = AB,

where for a square matrix C we are writing C ∗ = C
t
. However, (AB)∗ = B∗A∗ = BA, since

T ,S are self-adjoint. So, we need to only find two non-commuting self adjoint operators - we
can take the following operators on Euclidean space C2

T : C2 → C2 ; x 7→
[

0 1
1 0

]
x , S : C2 → C2 ; x 7→

[
2 0
0 1

]
x

You can check that TS(e1) 6= ST (e1), where e1 =

[
1
0

]
.

3. a) Let T , S ∈ L(V ), be self-adjoint operators on V , a real inner product space. Then, the
zero operator on V, Z : V → V ; v 7→ 0V is self-adjoint; we have (T +S)∗ = T ∗+S∗ = T +S ,
so that T + S is self-adjoint; if c ∈ R then (cT )∗ = cT ∗ = cT , so that cT is self-adjoint.
Hence, the set of self-adjoint operators on a real inner product space is a subspacae of L(V ).
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b) If T is self-adjoint operator on the complex inner product space V , then (
√
−1T )∗ =√

−1T ∗ = −
√
−1T 6=

√
−1T . Hence, the set of self-adjoint operators is not closed under

scalar multiplication.

4. Let P ∈ L(V ) be such that P2 = P.

(⇒) Suppose that P is an orthogonal projection. Then, range(P) = null(P)⊥. Moreover, the
only eigenvalues of P are λ = 0, 1 (this was proved in a previous HW exercise) and

P(v) = v ⇔ v ∈ range(P)

(this is true of any projection) so that range(P) consists of eigenvectors with eigenvalue λ = 1.
Hence, we can find an orthonormal basis (u1, ... , uk)of range(P) (using Gram-Schmidt applied
to any basis of range(P)) and an orthonormal basis (v1, ... , vl) of null(P) (using Gram-Schmidt
applied to any basis of null(P)). Then, (u1, ... , uk , v1, ... , vl) is an orthonormal basis of V
consisting of eigenvectors of P. Hence, if V is a real inner product space then P is self-adjoint,
by the Spectral Theorem. If V is complex inner product space then, for any v ∈ V , we can
write v = u + z , u ∈ range(P), z ∈ null(P) so that

〈P(v), v〉 = 〈u, u + z〉 = 〈u, u〉+ 〈u, z〉 = ||u||2 + 0 ∈ R

Hence, P is self-adjoint when V is complex inner product space.

(⇒) Suppose that P is self-adjoint. Then, we have null(P) = null(P∗ and

range(P) = null(P∗)⊥ = null(P)⊥ =⇒ V = null(P)⊕ null(P)⊥ = null(P)⊕ range(P)

Since P is self-adjoint then there is a basis of V consisting of orthonormal vectors of P -
call it (u1, ... , uk , v1, ... , vl), where P(ui ) = 0V and P(vi ) 6= 0V . Hence, dim null(P) = k
(ie, we are saying that the u’s are an o.n. basis of null(P)) and, since span(v1, ... , vl) ⊂
null(P)⊥ = range(P) and dim range(P) = dimV − dim null(P) = (k + l)− k = l , we see that
span(v1, ... , vl) = range(P). Thus, (v1, ... , vl) is an orthonormal basis of range(P) consisting
of eigenvectors of P with nonzero associated eigenvalues. As we are assuming that P2 = P, we
must have that the only eigenvalues of P are λ = 0, 1, so that the only nonzero eigenvalue is
λ = 1. Hence, for every u ∈ range(P) we have P(u) = u. Thus, since we can write v = z + u,
with z ∈ null(P), u ∈ range(P), we see that

P(v) = P(z + u) = P(z) + P(u) = 0V + u,

so that P is a projection onto range(P) with null(P) = range(P)⊥ - hence, it is an orthogonal
projection.

5. Let V be an inner product space, take (v1, ... , vn) an orthonormal basis of V (so that n ≥ 2).
Consider the normal operators T ,S ∈ L(V ) defined as follows:

T (v1) = 3v1, T (v2) = v2, T (vi ) = 0V , i ≥ 3,

S(v1) = v2, S(v2) = −v1, S(vi ) = 0V , i ≥ 3.

Then, the (n × n) matrices of T ,S with respect to the given basis are

A =


3 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0

 , B =


0 −1 · · · 0
1 0 · · · 0
...

...
. . .

...
0 0 · · · 0
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Since, A = A
t
, we have T = T ∗, and as BB

t
= B

t
B, we have SS∗ = S∗S , giving that both

T and S are normal.

Now, we see that the matrix of T + S is

A + B =


3 −1 · · · 0
1 1 · · · 0
...

...
. . .

...
0 0 · · · 0


and this last matrix is not diagonalisable (so that T + S is not diaagonalisable: indeed, the
eigenvalues of T + S are λ = 0, 2 and

null(T + S) = span(v3, ... , vn)

while the λ = 2 eigenspace is span(v1 + v2). If T + S were to be diagonalisable then we would
need to have two linearly independent eigenvectors with eigenvalue λ = 2, which obviously
can’t be the case. Hence, T + S is not normal (it isn’t diagonalisable).

6. Let T ∈ L(V ) be normal. Then, we must have that null(T ) = null(T ∗) (this is at the top
of p.131). Hence,

range(T ) = null(T ∗)⊥ = null(T )⊥ = range(T ∗).

7. There are a couple of ways to proceed:

Proof I) Let B be an orthonormal basis of V consisting of eigenvectors of T (it exists by the
Spectral Theorem). Then, we have the matrix of T relative to B is

[T ]B =

λ1 · · · 0
...

. . .
...

0 · · · λn


where λ1, ... ,λn are eigenvalues of T (counted with multiplicity). Let’s suppose that λ1 =
... = λk = 0, and λi 6= 0, for i > k . Thus, dim null(T ) = k. Now, for any j ≥ 1 we have

[T j ]B = [T ]jB = [T ]B =

λ
j
1 · · · 0
...

. . .
...

0 · · · λjn


and λjr = 0 =⇒ λr = 0 =⇒ r ∈ {1, ... , k}. Hence, null(T j) = span(v1, ... , vk) = null(T ),
for each j ≥ 1.

Now, since, for each j ≥ 1,

dim range(T ) = dimV − dim null(T ) = dimV − dim null(T j) = dim range(T j)

and range(T j) ⊂ range(T ), we see that range(T ) = range(T j) follows from null(T ) =
null(T j).

Proof II) As T is normal then we have null(T ) = null(T ∗) (see p.131). Hence, we have

range(T ) = null(T ∗)⊥ = null(T )⊥ =⇒ V = null(T )⊕ range(T )
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In particular, null(T ) ∩ range(T ) = {0}. Let’s prove null(T j) = null(T ), for every j ≥ 1,
by induction: the case j = 1 is trivial. Assume the result hold for j = s - we’ll show it
holds for j = s + 1. Since null(T ) ⊂ null(T s+1) always holds, we need only show that
null(T ) ⊃ null(T s+1). So, let z ∈ null(T s+1). Then,

0 = T s+1(z) = T (T s(z)) =⇒ T s(z) ∈ null(T ) ∩ range(T ) = {0}

=⇒ z ∈ null(T s) = null(T ), by induction.

Hence, null(T s+1) ⊂ null(T ) and the result is proved.

8. The requirements on T imply that the vectors (1, 2, 3) and (2, 5, 7) are eigenvectors of T .
However, with respect to the dot product on R3, we see that

(1, 2, 3) · (2, 5, 7) = 2 + 10 + 21 = 33 6= 0

so that eigenvectors corresponding to distinct eigenvalues are not orthogonal, contradicting
Corollary 7.8.

9. (⇒) Suppose that T is self-adjoint. Then, by Proposition 7.1 we see that all eigenvalues of
T are real.

(⇐) Suppose that all eigenvalues of the normal operator T are real. Then, by the (complex)
Spectral Theorem, we can find an orthonormal basis B of V consisting of eigenvectors of T .
Hence, we have the matrix of T relative to B is

[T ]B =

λ1 · · · 0
...

. . .
...

0 · · · λn

 , where λ1, ... ,λn ∈ R.

Then, we have that
[T ∗]B = [T ]

t

B = [T ]B =⇒ T = T ∗.

Hence, T is self-adjoint.

10. Since T is normal, there is an orthonormal basis B of V consisting of eigenvectors of T .
Then, we have

[T ]B =

λ1 · · · 0
...

. . .
...

0 · · · λn

 , and [T i ]B =

λ
i
1 · · · 0
...

. . .
...

0 · · · λin

 .

Hence, if T 8 = T 9 then we must have

[T 8]B =

λ
8
1 · · · 0
...

. . .
...

0 · · · λ8n

 =

λ
9
1 · · · 0
...

. . .
...

0 · · · λ9n

 = [T 9]B

so that, foe each i = 1, ... , n

λ8i = λ9i =⇒ λ8i (1− λi ) = 0
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In particular, each eigenvalue λi is either equal to 1 or 0. Since the eigenvalues of T are real
then T is self-adjoint (by previous exercise). Moreover, if we assume that λ1 = · · · = λk = 0
and λk+1 = ... = λn = 1 then we have

[T ]B =

λ
2
1 · · · 0
...

. . .
...

0 · · · λ2n

 =

λ1 · · · 0
...

. . .
...

0 · · · λn

 = [T ]B

so that T 2 = T .

11. Let T be normal and B = (v1, ... , vn) be an orthonormal basis of V consisting of eigen-
vectors of T . Suppose that

[T ]B =

λ1 · · · 0
...

. . .
...

0 · · · λn


Then, by the Fundamental Theorem of Algebra, we can find a (complex) square root of λi , for
each i = 1, ... , n. Suppose that µ2i = λi , for each i . Then, define the operators S ∈ L(V ) as
follows:

S(v1) = µ1v1, ... ,S(vn) = µnvn

Then, we have

[S2]B =

µ
2
1 · · · 0
...

. . .
...

0 · · · µ2n

 =

λ1 · · · 0
...

. . .
...

0 · · · λn

 = [T ]B =⇒ S2 = T .

5


