Homework 11 Solutions. Math 110, Fall 2013.

1. a) Suppose that T were self-adjoint. Then, the Spectral Theorem tells us that there would exist an orthonormal basis of $P_{2}(\mathbb{R}),\left(p_{1}, p_{2}, p_{3}\right)$, consisting of eigenvectors of T. It is straightforward to see, by inspection of T, that the eigenvalues of T are $\lambda=0,1$ and that

$$
\begin{gathered}
T(v)=0 \Leftrightarrow v \in \operatorname{null}(T)=\left\{a_{0}+a_{2} x^{t} \mid a_{0}, a_{2} \in R\right\}, \\
T(v)=v \Leftrightarrow v \in \operatorname{span}(x) .
\end{gathered}
$$

Thus, we have $p_{1}, p_{2} \in \operatorname{null}(T)$, with $\left\langle p_{1}, p_{2}\right\rangle=0$ and $\left\|p_{1}\right\|=\left\|p_{2}\right\|=1$. The remaining eigenvector p_{3} must be an element of $\operatorname{span}(x)$, so that $p_{3}=c x$, for some (nonzero) $c \in \mathbb{R}$ such that $\left\|p_{3}\right\|=1$. Moreover, we would require that null $(T) \subset \operatorname{span}(x)^{\perp}$, since eigenvectors associated to distinct eigenvalues are orthogonal. Therefore, null $(T)=\operatorname{span}(x)^{\perp}$, by dimension considerations (dim span $\left.(x)^{\perp}=\operatorname{dim} P_{2}-\operatorname{dim} \operatorname{span}(x)=3-1-2\right)$.
However, if $p=a_{0}+a_{2} x^{2} \in \operatorname{span}(x)^{\perp}$ then

$$
0=\left\langle a_{0}+a_{2} x^{2}, x\right\rangle=\int_{0}^{1}\left(a_{0}+a_{2} x^{2}\right) x d x=\frac{1}{4}\left(2 a_{0}+a_{2}\right) \Longrightarrow a_{2}=-2 a_{0}
$$

so that $p=a_{0}\left(1-2 x^{2}\right)$. That is, we have shown that $\operatorname{span}\left(1-2 x^{2}\right)=\operatorname{span}(x)^{\perp} \cap \operatorname{null}(T)=$ $\operatorname{null}(T)$, since null $(T)=\operatorname{span}(x)^{\perp}$. Then, we would have

$$
2=\operatorname{dim} \operatorname{null}(T)=\operatorname{dim} \operatorname{span}\left(1-2 x^{2}\right)=1
$$

which is absurd. Hence, our assumption that T is self-adjoint is false.
b) Theorem 6.47 requires that the matrix of T^{*} (relative to $\mathcal{C} \subset W$ and $\mathcal{B} \subset V$) is the conjugate transpose of the matrix of T (relative to $\mathcal{B} \subset V$ and $\mathcal{C} \subset W$) if both \mathcal{B} and \mathcal{C} are orthonormal. However, the basis $\mathcal{B}=\mathcal{C}=\left(1, x, x^{2}\right)$ of P_{2} is not orthonormal (with respect to the given inner product) so that we are not contradicting Theorem 6.47. If we chose an orthonormal basis of P_{2}, call it \mathcal{A} (obtained by Gram-Schmidt process on ($1, x, x^{2}$), for example), then we would find $[T]_{\mathcal{A}} \neq \overline{[T]}_{\mathcal{A}}^{t}$.
2. This is false. This would imply that the matrices A, B of two self-adjoint operators T, S (relative to an orthonormal basis) would satisfy

$$
(A B)^{*}=A B
$$

where for a square matrix C we are writing $C^{*}=\bar{C}^{t}$. However, $(A B)^{*}=B^{*} A^{*}=B A$, since T, S are self-adjoint. So, we need to only find two non-commuting self adjoint operators - we can take the following operators on Euclidean space \mathbb{C}^{2}

$$
T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} ; \underline{x} \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \underline{x}, \quad S: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} ; \underline{x} \mapsto\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \underline{x}
$$

You can check that $T S\left(e_{1}\right) \neq S T\left(e_{1}\right)$, where $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
3. a) Let $T, S \in L(V)$, be self-adjoint operators on V, a real inner product space. Then, the zero operator on $V, Z: V \rightarrow V ; v \mapsto 0_{V}$ is self-adjoint; we have $(T+S)^{*}=T^{*}+S^{*}=T+S$, so that $T+S$ is self-adjoint; if $c \in \mathbb{R}$ then $(c T)^{*}=\bar{c} T^{*}=c T$, so that $c T$ is self-adjoint. Hence, the set of self-adjoint operators on a real inner product space is a subspacae of $L(V)$.
b) If T is self-adjoint operator on the complex inner product space V, then $(\sqrt{-1} T)^{*}=$ $\overline{\sqrt{-1}} T^{*}=-\sqrt{-1} T \neq \sqrt{-1} T$. Hence, the set of self-adjoint operators is not closed under scalar multiplication.
4. Let $P \in L(V)$ be such that $P^{2}=P$.
(\Rightarrow) Suppose that P is an orthogonal projection. Then, range $(P)=$ null $(P)^{\perp}$. Moreover, the only eigenvalues of P are $\lambda=0,1$ (this was proved in a previous HW exercise) and

$$
P(v)=v \Leftrightarrow v \in \operatorname{range}(P)
$$

(this is true of any projection) so that range (P) consists of eigenvectors with eigenvalue $\lambda=1$. Hence, we can find an orthonormal basis (u_{1}, \ldots, u_{k}) of range (P) (using Gram-Schmidt applied to any basis of range (P)) and an orthonormal basis (v_{1}, \ldots, v_{l}) of null((P) (using Gram-Schmidt applied to any basis of null $(P))$. Then, $\left(u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{l}\right)$ is an orthonormal basis of V consisting of eigenvectors of P. Hence, if V is a real inner product space then P is self-adjoint, by the Spectral Theorem. If V is complex inner product space then, for any $v \in V$, we can write $v=u+z, u \in \operatorname{range}(P), z \in \operatorname{null}(P)$ so that

$$
\langle P(v), v\rangle=\langle u, u+z\rangle=\langle u, u\rangle+\langle u, z\rangle=\|u\|^{2}+0 \in \mathbb{R}
$$

Hence, P is self-adjoint when V is complex inner product space.
(\Rightarrow) Suppose that P is self-adjoint. Then, we have null $(P)=\operatorname{null}\left(P^{*}\right.$ and

$$
\operatorname{range}(P)=\operatorname{null}\left(P^{*}\right)^{\perp}=\operatorname{null}(P)^{\perp} \Longrightarrow V=\operatorname{null}(P) \oplus \operatorname{null}(P)^{\perp}=\operatorname{null}(P) \oplus \operatorname{range}(P)
$$

Since P is self-adjoint then there is a basis of V consisting of orthonormal vectors of P call it $\left(u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{l}\right)$, where $P\left(u_{i}\right)=0_{V}$ and $P\left(v_{i}\right) \neq 0_{v}$. Hence, dim null $(P)=k$ (ie, we are saying that the u 's are an o.n. basis of null (P)) and, since $\operatorname{span}\left(v_{1}, \ldots, v_{l}\right) \subset$ $\operatorname{null}(P)^{\perp}=\operatorname{range}(P)$ and $\operatorname{dim} \operatorname{range}(P)=\operatorname{dim} V-\operatorname{dim} \operatorname{null}(P)=(k+I)-k=I$, we see that $\operatorname{span}\left(v_{1}, \ldots, v_{l}\right)=\operatorname{range}(P)$. Thus, $\left(v_{1}, \ldots, v_{l}\right)$ is an orthonormal basis of range (P) consisting of eigenvectors of P with nonzero associated eigenvalues. As we are assuming that $P^{2}=P$, we must have that the only eigenvalues of P are $\lambda=0,1$, so that the only nonzero eigenvalue is $\lambda=1$. Hence, for every $u \in \operatorname{range}(P)$ we have $P(u)=u$. Thus, since we can write $v=z+u$, with $z \in \operatorname{null}(P), u \in \operatorname{range}(P)$, we see that

$$
P(v)=P(z+u)=P(z)+P(u)=0 v+u,
$$

so that P is a projection onto range (P) with null $(P)=\operatorname{range}(P)^{\perp}$ - hence, it is an orthogonal projection.
5. Let V be an inner product space, take $\left(v_{1}, \ldots, v_{n}\right)$ an orthonormal basis of V (so that $n \geq 2$). Consider the normal operators $T, S \in L(V)$ defined as follows:

$$
\begin{aligned}
& T\left(v_{1}\right)=3 v_{1}, \quad T\left(v_{2}\right)=v_{2}, \quad T\left(v_{i}\right)=0 v, i \geq 3, \\
& S\left(v_{1}\right)=v_{2}, S\left(v_{2}\right)=-v_{1}, S\left(v_{i}\right)=0 v, i \geq 3 .
\end{aligned}
$$

Then, the $(n \times n)$ matrices of T, S with respect to the given basis are

$$
A=\left[\begin{array}{cccc}
3 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right], \quad B=\left[\begin{array}{cccc}
0 & -1 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

Since, $A=\bar{A}^{t}$, we have $T=T^{*}$, and as $B \bar{B}^{t}=\bar{B}^{t} B$, we have $S S^{*}=S^{*} S$, giving that both T and S are normal.

Now, we see that the matrix of $T+S$ is

$$
A+B=\left[\begin{array}{cccc}
3 & -1 & \cdots & 0 \\
1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

and this last matrix is not diagonalisable (so that $T+S$ is not diaagonalisable: indeed, the eigenvalues of $T+S$ are $\lambda=0,2$ and

$$
\operatorname{null}(T+S)=\operatorname{span}\left(v_{3}, \ldots, v_{n}\right)
$$

while the $\lambda=2$ eigenspace is $\operatorname{span}\left(v_{1}+v_{2}\right)$. If $T+S$ were to be diagonalisable then we would need to have two linearly independent eigenvectors with eigenvalue $\lambda=2$, which obviously can't be the case. Hence, $T+S$ is not normal (it isn't diagonalisable).
6. Let $T \in L(V)$ be normal. Then, we must have that $\operatorname{null}(T)=\operatorname{null}\left(T^{*}\right)$ (this is at the top of $p .131$). Hence,

$$
\operatorname{range}(T)=\operatorname{null}\left(T^{*}\right)^{\perp}=\operatorname{null}(T)^{\perp}=\operatorname{range}\left(T^{*}\right)
$$

7. There are a couple of ways to proceed:

Proof I) Let B be an orthonormal basis of V consisting of eigenvectors of T (it exists by the Spectral Theorem). Then, we have the matrix of T relative to B is

$$
[T]_{B}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of T (counted with multiplicity). Let's suppose that $\lambda_{1}=$ $\ldots=\lambda_{k}=0$, and $\lambda_{i} \neq 0$, for $i>k$. Thus, $\operatorname{dim} \operatorname{null}(T)=k$. Now, for any $j \geq 1$ we have

$$
\left[T^{j}\right]_{B}=[T]_{B}^{j}=[T]_{B}=\left[\begin{array}{ccc}
\lambda_{1}^{j} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{j}
\end{array}\right]
$$

and $\lambda_{r}^{j}=0 \Longrightarrow \lambda_{r}=0 \Longrightarrow r \in\{1, \ldots, k\}$. Hence, $\operatorname{null}\left(T^{j}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{null}(T)$, for each $j \geq 1$.

Now, since, for each $j \geq 1$,

$$
\operatorname{dim} \operatorname{range}(T)=\operatorname{dim} V-\operatorname{dim} \operatorname{null}(T)=\operatorname{dim} V-\operatorname{dim} \operatorname{null}\left(T^{j}\right)=\operatorname{dim} \operatorname{range}\left(T^{j}\right)
$$

and $\operatorname{range}\left(T^{j}\right) \subset \operatorname{range}(T)$, we see that $\operatorname{range}(T)=\operatorname{range}\left(T^{j}\right)$ follows from null $(T)=$ null(T^{j}).
Proof II) As T is normal then we have $\operatorname{null}(T)=\operatorname{null}\left(T^{*}\right)$ (see p.131). Hence, we have

$$
\operatorname{range}(T)=\operatorname{null}\left(T^{*}\right)^{\perp}=\operatorname{null}(T)^{\perp} \Longrightarrow V=\operatorname{null}(T) \oplus \operatorname{range}(T)
$$

In particular, null $(T) \cap \operatorname{range}(T)=\{0\}$. Let's prove null $\left(T^{j}\right)=\operatorname{null}(T)$, for every $j \geq 1$, by induction: the case $j=1$ is trivial. Assume the result hold for $j=s$ - we'll show it holds for $j=s+1$. Since null $(T) \subset$ null $\left(T^{s+1}\right)$ always holds, we need only show that $\operatorname{null}(T) \supset \operatorname{null}\left(T^{s+1}\right)$. So, let $z \in \operatorname{null}\left(T^{s+1}\right)$. Then,

$$
\begin{aligned}
0=T^{s+1}(z) & =T\left(T^{s}(z)\right) \Longrightarrow T^{s}(z) \in \operatorname{null}(T) \cap \operatorname{range}(T)=\{0\} \\
& \Longrightarrow z \in \operatorname{null}\left(T^{s}\right)=\operatorname{null}(T), \text { by induction. }
\end{aligned}
$$

Hence, $\operatorname{null}\left(T^{s+1}\right) \subset \operatorname{null}(T)$ and the result is proved.
8. The requirements on T imply that the vectors $(1,2,3)$ and $(2,5,7)$ are eigenvectors of T. However, with respect to the dot product on \mathbb{R}^{3}, we see that

$$
(1,2,3) \cdot(2,5,7)=2+10+21=33 \neq 0
$$

so that eigenvectors corresponding to distinct eigenvalues are not orthogonal, contradicting Corollary 7.8.
9. (\Rightarrow) Suppose that T is self-adjoint. Then, by Proposition 7.1 we see that all eigenvalues of T are real.
(\Leftarrow) Suppose that all eigenvalues of the normal operator T are real. Then, by the (complex) Spectral Theorem, we can find an orthonormal basis B of V consisting of eigenvectors of T. Hence, we have the matrix of T relative to B is

$$
[T]_{B}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right], \text { where } \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}
$$

Then, we have that

$$
\left[T^{*}\right]_{B}={\overline{[T]_{B}}}_{B}^{t}=[T]_{B} \Longrightarrow T=T^{*}
$$

Hence, T is self-adjoint.
10. Since T is normal, there is an orthonormal basis B of V consisting of eigenvectors of T. Then, we have

$$
[T]_{B}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right] \text {, and }\left[T^{i}\right]_{B}=\left[\begin{array}{ccc}
\lambda_{1}^{i} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{i}
\end{array}\right]
$$

Hence, if $T^{8}=T^{9}$ then we must have

$$
\left[T^{8}\right]_{B}=\left[\begin{array}{ccc}
\lambda_{1}^{8} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{8}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1}^{9} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{9}
\end{array}\right]=\left[T^{9}\right]_{B}
$$

so that, foe each $i=1, \ldots, n$

$$
\lambda_{i}^{8}=\lambda_{i}^{9} \Longrightarrow \lambda_{i}^{8}\left(1-\lambda_{i}\right)=0
$$

In particular, each eigenvalue λ_{i} is either equal to 1 or 0 . Since the eigenvalues of T are real then T is self-adjoint (by previous exercise). Moreover, if we assume that $\lambda_{1}=\cdots=\lambda_{k}=0$ and $\lambda_{k+1}=\ldots=\lambda_{n}=1$ then we have

$$
[T]_{B}=\left[\begin{array}{ccc}
\lambda_{1}^{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]=[T]_{B}
$$

so that $T^{2}=T$.
11. Let T be normal and $B=\left(v_{1}, \ldots, v_{n}\right)$ be an orthonormal basis of V consisting of eigenvectors of T. Suppose that

$$
[T]_{B}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Then, by the Fundamental Theorem of Algebra, we can find a (complex) square root of λ_{i}, for each $i=1, \ldots, n$. Suppose that $\mu_{i}^{2}=\lambda_{i}$, for each i. Then, define the operators $S \in L(V)$ as follows:

$$
S\left(v_{1}\right)=\mu_{1} v_{1}, \ldots, S\left(v_{n}\right)=\mu_{n} v_{n}
$$

Then, we have

$$
\left[S^{2}\right]_{B}=\left[\begin{array}{ccc}
\mu_{1}^{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mu_{n}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]=[T]_{B} \Longrightarrow S^{2}=T .
$$

