Solutions to Homework \#10.
6. $21,22,26,27,28,29,30,31,32$
21. The question is asking for the orthogonal projection of the vector $(1,2,3,4)$ onto the subspace U. To do this we first need an orthonormal basis for U. Applying Gram-Schmidt to the given spanning list for U produces the orthonormal basis $\frac{1}{\sqrt{2}}(1,1,0,0), \frac{1}{\sqrt{5}}(0,0,1,2)$ for U. Then the orthogonal projection of $(1,2,3,4)$ onto U can be computed by

$$
\left\langle(1,2,3,4), \frac{1}{\sqrt{2}}(1,1,0,0)\right\rangle \frac{1}{\sqrt{2}}(1,1,0,0)+\left\langle(1,2,3,4), \frac{1}{\sqrt{5}}(0,0,1,2)\right\rangle \frac{1}{\sqrt{5}}(0,0,1,2)=\left(\frac{3}{2}, \frac{3}{2}, \frac{11}{5}, \frac{22}{5}\right)
$$

22. Let U be the subspace of $P_{\leq 3}(\mathbb{R})$ consisting of polynomials p satisfying $p(0)=p^{\prime}(0)=0$. Then the problem is asking for the orthogonal projection of the vector $2+3 x$ onto the subspace U. We first apply the Gram-Schmidt procedure to the basis $\left(x^{2}, x^{3}\right)$ for U, which gives the orthonormal basis $\left(\sqrt{5} x^{2}, 6 \sqrt{7} x^{3}-5 \sqrt{7} x^{2}\right)$.

Now we look at our vector $2+3 x$, and first take its inner products with the two vectors above

$$
\begin{aligned}
\left\langle 2+3 x, \sqrt{5} x^{2}\right. & =\int_{0}^{1}(2+3 x)\left(\sqrt{5} x^{2}\right) d x=\frac{17 \sqrt{5}}{12} \\
\left\langle 2+3 x, 6 \sqrt{7} x^{3}-5 \sqrt{7} x^{2}\right\rangle & =\int_{0}^{1}(2+3 x)\left(6 \sqrt{7} x^{3}-5 \sqrt{7} x^{2}\right) d x=-\frac{29 \sqrt{7}}{60}
\end{aligned}
$$

These will be the coefficients when we project this vector onto U, namely:

$$
\left(\frac{17 \sqrt{5}}{12}\right) \sqrt{5} x^{2}+\left(-\frac{29 \sqrt{7}}{60}\right)\left(6 \sqrt{7} x^{3}-5 \sqrt{7} x^{2}\right)=\frac{1}{10} x^{2}(240-203 x)
$$

26. Whatever the adjoint $T^{*} a$ is, it must satisfy $\langle T u, a\rangle=\left\langle u, T^{*} a\right\rangle$, which can be rewritten as $\langle u, v\rangle a=\left\langle u, T^{*} a\right\rangle$. So setting $T^{*} a=\bar{a} v$ works, and by uniqueness of adjoints, this is the formula for T^{*}.
27. Since the matrix for T in terms of the standard basis is

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right)
$$

and since the standard basis is an orthonormal basis (with respect to the standard inner product on \mathbb{F}^{n}), we can find the adjoint by just taking the conjugate transpose of this matrix. So the matrix of T^{*} in the standard basis is

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

So the formula for T^{*} is $T^{*}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{2}, z_{3}, \ldots, z_{n}, 0\right)$.
28. First note that, for any $\lambda,(T-\lambda I)^{*}=T^{*}-\bar{\lambda} I$, by properties of adjoints. Now suppose that λ is an eigenvalue of T, so that Null $(T-\lambda I)$ is not zero. But then $\left(\operatorname{Range}(T-\lambda I)^{*}\right)^{\perp}$ is nonzero, since these are equal by $6.46(\mathrm{c})$. Thus Range $(T-\lambda I)^{*}$ is not equal to all of V, and hence $(T-\lambda I)$ is neither injective nor surjective. By the comment at the beginning, this means $T^{*}-\bar{\lambda} I$ is not injective, so $\bar{\lambda}$ is an eigenvalue of T^{*}. The argument in the other direction is the same, just replacing T by T^{*} and λ by $\bar{\lambda}$
29. First assume that U is invariant under T, and pick $w \in U^{\perp}$. We must show that $T^{*} w$ is in U^{\perp} also. To do this, pick any $u \in U$. By the definition of adjoint, we have $\left\langle u, T^{*} w\right\rangle=\langle T u, w\rangle$, and this is zero since $T u \in U$ and $w \in U^{\perp}$. The proof of the other direction is identical: just replace U by U^{\perp} and T by T^{*}, and use the facts that $\left(U^{\perp}\right)^{\perp}=U$ and $T^{* *}=T$.
30. For (a), T is injective iff Null $T=0$ iff (Range $\left.T^{*}\right)^{\perp}=0$ (by 6.46) iff Range $T^{*}=W$ iff T^{*} is surjective. For (b), T is surjective iff Range $T=W$ iff (Null $\left.T^{*}\right)^{\perp}=W$ (by 6.46) iff Null $T^{*}=0$ iff T^{*} is injective.
31. The rank-nullity theorem applied to T, and to T^{*} gives us the following two equations:

$$
\begin{align*}
\operatorname{dim} V & =\operatorname{dim} \operatorname{Null} T+\operatorname{dim} \text { Range } T \tag{1}\\
\operatorname{dim} W & =\operatorname{dim} \operatorname{Null} T^{*}+\operatorname{dim} \text { Range } T^{*} \tag{2}
\end{align*}
$$

We can rewrite the first one as

$$
\operatorname{dim}(\operatorname{Null} T)^{\perp}=\operatorname{dim} \text { Range } T
$$

and since (Null $T)^{\perp}=$ Range T^{*}, this gives the second equality. To prove the other equality, we replace dim Range T^{*} by $\operatorname{dim} V-\operatorname{dim}(\text { Null } T)^{\perp}$ in the second equation above, and reorganize.
32. Left-multiplication by A gives a linear map L_{A} from \mathbb{R}^{n} to \mathbb{R}^{m}. Moreover, the matrix of L_{A} with respect to the standard (orthonormal) basis is just A. So by theorem 6.47, the adjoint map L_{A}^{*} from \mathbb{R}^{m} to \mathbb{R}^{n} is just left multiplication by A^{T}. By the previous problem, the ranges of L_{A} and L_{A}^{*} have the same dimension. But the range of L_{A} is just the span of the columns of A, as you can see by applying L_{A} to each of the standard basis vectors. Similarly, the range of L_{A}^{*} is the span of the columns of A^{T}, which is the same as the span of the rows of A (except that they're row vectors rather than column vectors). Therefore the row span and the column span of A have the same dimension. (PS - the point of this problem is to convince you that the abstract point of view is useful! Look up "row rank=column rank" in a standard linear algebra text to see a more traditional proof - it's much messier. But of course, we had to develop a lot of abstract theory first...)

