Solutions to Final Exam.

1. i. T ii. T iii. T iv. T v. F vi. T vii. T viii. F ix T x. T
2. (a) v_{1}, \ldots, v_{k} linearly independent means if for any scalars a_{1}, \ldots, a_{k}, we have $a_{1} v_{1}+\cdots+a_{k} v_{k}=$ 0 , then we have $a_{1}=\cdots=a_{k}=0$. The span of v_{1}, \ldots, v_{k} is the subset of V comprising vectors v that can be written in the form $v=a_{1} v_{1}+\cdots+a_{k} v_{k}$ for some scalars a_{1}, \ldots, a_{k}. (b) Since $v \in \operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)$, there are scalars c_{1}, \ldots, c_{k} in F such that

$$
v=c_{1} v_{1}+\cdots c_{k} v_{k} .
$$

This equation is a nontrivial linear dependence amongst the vectors $\left(v_{1}, \ldots, v_{k}, v\right)$ (nontrivial since at least the coefficient of v is nonzero), thus this list is dependent.
3. Since T is normal, the complex spectral theorem applies, and we know there is an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ for V consisting of eigenvectors for T. Pick any $v \in V$, and write it as $v=$ $c_{1} u_{1}+\cdots c_{n} u_{n}$. Since this is an orthonormal basis we have $\|v\|^{2}=\left|c_{1}\right|^{2}+\cdots+\left|c_{n}\right|^{2}$. Next, let the eigenvalues of u_{i} be λ_{i}, so we have

$$
T v=c_{1} \lambda_{1} u_{1}+\cdots c_{n} \lambda_{n} u_{n},
$$

hence using the fact that this is an orthonormal basis again, and that $\left|\lambda_{i}\right| \leq 1$,

$$
\|T v\|^{2}=\left\|c_{1} \lambda_{1} u_{1}+\cdots c_{n} \lambda_{n} u_{n}\right\|^{2}=\left|c_{1}\right|^{2}\left|\lambda_{1}\right|^{2}+\cdots+\left|c_{n}\right|^{2} \leq\left|c_{1}\right|^{2}+\cdots+\left|c_{n}\right|^{2}=\|v\|^{2},
$$

which of course implies (since the norm is a nonnegative real number) that $\|T v\| \leq\|v\|$.
4. For each part, we use the following facts: T is a projection iff \mathbb{C}^{3} decomposes as the direct sum of the eigenspaces E_{0} and E_{1} (recall that E_{0} is the null space, and E_{1} the range), and it's an orthogonal projection if furthermore $E_{0} \perp E_{1}$. This gives the following answers: a. Orthogonal Projection; b. Orthogonal Projection; c. Projection (not orthogonal); d. Orthogonal Projection.
5. First we have to find some eigenvalues and eigenvectors. By either inspection or direct calculation we find that the vectors $e_{1}-e_{2}, e_{2}-e_{3}, e_{3}-e_{4}$, and $e_{4}-e_{5}$ are eigenvectors with eigenvalue 0 , and $e_{1}+e_{2}+e_{3}+e_{4}+e_{5}$ is an eigenvector with eigenvalue 10. But now we have a basis of eigenvectors, which means that the Jordan normal form of T is diagonal, with diagonal entries $0,0,0,0,10$. From this Jordan form we find the characteristic polynomial is $z^{4}(z-10)$, and the minimal polynomial is $z(z-10)$.
6. T_{1} is symmetric, hence diagonalisable. Therefore, it can't have the desired minimal polynomial. T_{2} is nilpotent, hence has exactly one eigenvalue $(=0)$, so it can't have ± 1 as eigenvalues. T_{3} has the desired minimal polynomial. T_{4} has the desired minimal polynomial. T_{5} is symmetric, hence diagonalisable. T_{6} has the desired minimal polynomial.
7. $\operatorname{dim} \operatorname{range}(T-1)=6$ implies that $\operatorname{dim} \operatorname{null}(T-1)=8-6=2$, so there are two 1-Jordan blocks. As $\operatorname{null}(T-1)^{2} \cap \operatorname{null}(T-2)^{3}=\{0\}$, and the dimensions add up to 8 , we see that

$$
\mathbb{C}^{8}=\operatorname{null}(T-1)^{2} \oplus \operatorname{null}(T-2)^{3} .
$$

Hence, the only eigenvalues are $1,2 \cdot \operatorname{dim} \operatorname{null}(T-1)^{2}>\operatorname{dim} \operatorname{null}(T-1)$ gives that the 1-generalised eigenspace is $n u l l(T-1)^{2}$. Hence, the largest 1-Jordan block has size 2×2, and there must be two
of them. Since $\operatorname{null}(T-2)^{3}$ is the 2-generalised eigenspace, we have the largest 2-Jordan block has size at most 3 . Hence, we have the following possibilities - where $J(\lambda, i)$ denotes an $i \times i \lambda$-Jordan block -

$$
\begin{aligned}
& {\left[\begin{array}{llll}
J(1,2) & & & \\
& J(1,2) & & \\
& & J(2,3) & \\
& & & J(2,1)
\end{array}\right],} \\
& {\left[\begin{array}{llll}
J(1,2) & & & \\
& J(1,2) & & \\
& & J(2,2) & \\
& & & J(2,2)
\end{array}\right],} \\
& {\left[\begin{array}{lllll}
J(1,2) & & & & \\
& J(1,2) & & & \\
& & J(2,2) & & \\
& & & J(2,1) & \\
& & & & J(2,1)
\end{array}\right],} \\
& {\left[\begin{array}{llllll}
J(1,2) & & & & & \\
& J(1,2) & & & & \\
& & J(2,1) & & & \\
& & & J(2,1) & & \\
& & & & J(2,1) & \\
& & & & & J(2,1)
\end{array}\right]}
\end{aligned}
$$

8. We have $T^{2}=0$ so that the only eigenvalue is 0 . Since $\operatorname{null}(T)=\operatorname{span}\left(e_{2}, e_{1}-e_{3}\right)$, so the dimension is two, we have that there are two Jordan blocks, so that Jordan form is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

A Jordan basis is $\left(v_{1}, v_{2}, v_{3}\right)$, where we require that

$$
T\left(v_{1}\right)=0, T\left(v_{2}\right)=v_{1}, T\left(v_{3}\right)=0 .
$$

Thus, we need $v_{2} \notin \operatorname{null}(T)$. Take $v_{2}=e_{3}$. Then, $v_{1}=T\left(v_{2}\right)=e_{2}$. Finally, we need $v_{3} \in \operatorname{null}(T)$ so that $\left(v_{1}, v_{2}, v_{3}\right)$ is linearly independent. Take $v_{3}=e_{1}-e_{3}$. Then, $\left(v_{1}, v_{2}, v_{3}\right)$ is a Jordan basis.
9. a. We have

$$
U=\operatorname{span}\left(e_{1}-e_{2}, e_{2}-e_{3}\right) .
$$

Apply Gram-Schmidt to the basis $\left(e_{1}-e_{2}, e_{2}-e_{3}\right)$ to obtain an orthonormal basis $\left(v_{1}, v_{2}\right)$ of U, where

$$
\begin{gathered}
v_{1}=\frac{1}{\sqrt{2}}\left(e_{1}-e_{2}\right), \\
v_{2}=\frac{1}{\sqrt{6}}\left(e_{1}+e_{2}-2 e_{3}\right) .
\end{gathered}
$$

b. It is the vector

$$
u=\left(\left(e_{1}+e_{2}\right) \cdot v_{1}\right) v_{1}+\left(\left(e_{2}+e_{3}\right) \cdot v_{2}\right) v_{2}=\left[\begin{array}{c}
1 / 3 \\
1 / 3 \\
-2 / 3
\end{array}\right]
$$

10. This can be proved: let $w \in \operatorname{range}(T)$ be nonzero. Then, (w) is a basis of $\operatorname{range}(T)$; extend to a basis $C=\left(w, w_{1}, \ldots, w_{k}\right)$ of W. Let $\left(v_{2}, \ldots, v_{n}\right)$ be a basis of $n u l l(T)$, and extend to a basis $B=\left(v_{1}, \ldots, v_{n}\right)$ of V (we know that $\left.\operatorname{dim} \operatorname{null}(T)=\operatorname{dim} V-\operatorname{dim} \operatorname{range}(T)=\operatorname{dim} V-1\right)$. Then, we have the matrix of T relative to B and C is

$$
[T]_{B}^{C}=\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

Consider the linear functional $f: V \rightarrow \mathbb{C}$ defined on the basis B as

$$
f\left(v_{2}\right)=\cdots=f\left(v_{n}\right)=0 \in \mathbb{C}, \text { and } f\left(v_{1}\right)=a_{1} .
$$

This defines a linear functional on V and, if $v=\sum_{j=1}^{n} b_{j} v_{j} \in V$, then

$$
T(v)=b_{1} a_{1} w=f(v) w .
$$

