
Solutions to HW9

assigned by prof. Nadler

1 5.1 # 3a

1. The characteristic polynomial is det(A − λI) = det

(
1− λ 2

3 2− λ

)
= (1 − λ)(2 − λ) − 6 = λ2 − 3λ − 4. The roots

are λ = −1 and λ = 4 and these are precisely the eigenvalues of A.

2. The λ = −1 eigenspace is span{(−1, 1)t}. Indeed, the system (A− (−1)I)x = 0 is

(
2 2 0
3 3 0

)
⇒
(

1 1 0
0 0 0

)
so we can take x2 to be a free variable and x1 = −x2, so the solution space is the set of all vectors of the form (−x2, x2)t,
i.e., the aforementioned span.

Similarly, the λ = 4 eigenspace is span{(2, 3)t}. This comes from the system

(
−3 2 0
3 −2 0

)
⇒
(

1 − 2
3 0

0 0 0

)
so that x2 is free and x1 = (2/3)x2. Slap an x2 = 3 in there to get an integer vector (2, 3)t as claimed.

3. These vectors correspond to distinct eigenvalues and so are linearly independent. Hence β = {(−1, 1)t, (2, 3)t} :=}b1, b2}
is a basis of eigenvectors.

4. The calculations Ab1 = −b1 and Ab2 = 4b2 show that [A]β =

(
−1 0
0 4

)
. (Perhaps the book would rather us write

[LA]β .) If σ is the standard basis of F2, then of course [Id]σβ [A]β [Idβσ = [A]σ = A. So the Q−1 = [Id]σβ which is easy
to compute: run through the vectors of β and express them in terms of σ - but since σ is the standard basis this is

very easy [b1]σ = b1 = (−1, 1)t and [b2]σ = b2 = (2, 3)t. So Q−1 =

(
−1 2
1 3

)
. Using the inverse formula we have

Q =

(
−3/5 2/5
1/5 1/5

)
. So the diagonalization is

(
−1 2
1 3

)(
−1 0
0 4

)(
−3/5 2/5
1/5 1/5

)
=

(
1 2
3 2

)

2 5.1 # 5

(T − λI)v = 0⇔ Tv− λIv = 0⇔ Tv = λv. (In conjunction with v 6= 0 the equation on the left is “v ∈ N(T − λI) & v 6= 0”
and the one on the right is “v is an eigenvector with eigenvalue λ.”)

3 5.1 # 8

• (a) A linear operator on a finite dimensional vector space is not invertible if and only if it has a nontrivial nullspace (by
the dimension theorem - and note that this is not necessarily true in infinite dimensions). Having a nontrival nullspace
amounts to the existence of a nonzero v such that Tv = 0 = 0 · v, i.e., a λ = 0 eigenvector.

[Alternate proof: 0 is an eigenvalue ⇔ 0 is a root of the characteristic polynomial ⇔ det([L]β − 0(I)) = det([L]β) = 0
⇔ L not invertible.]

• (b) If v 6= 0 and Tv = λv, then λ must not be zero (lest T be singular). Then v = λT−1v and so we can divide by λ to
get λ−1v = T−1v which shows that λ−1 is an eigenvalue of T−1. The result follows by symmetry.
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• (c) A matrix A is singular if and only if 0 is not an eigenvalue of LA. [Proof: A is singular ⇔ LA is not invertible ⇔ 0
not an eigenvalue of LA (using part (a)).]

If A is invertible and λ is an eigenvalue of LA then λ−1 is an eigenvalue of L−1A = LA−1 . [Proof: If A is invertible then
LA is invertible and by (b) λ is an eigenvalue of LA if and only if λ−1 is an eigenvalue of L−1A .

4 5.1 # 9

If A is diagonal, then det(A−λI) = det


a1,1 − λ a1,2 · · · a1,n

0 a2,2 − λ · · · a2,n
...

...
...

0 0 · · · an,n − λ

 =

n∏
i=1

(ai,i−λ). The roots of this polynomial

are precisely the values on the diagonal.

[I am implicitly using a theorem here, that if A is upper triangular the determinant is the product of the entries on the diagonal.
With expansion by minors one can prove this by induction (e.g. expand along the first column detA = a1,1 det(A1,1)+0 ·(· · ·)
and note that A1,1 (the (n − 1) × (n − 1) minor which omits the first row and column) is still upper triangular). With the
cooler definition detA =

∑
σ∈Sn

(−1)σ
∏n
i=1 ai,σ(i) note that in order for all of ai,σ(i) 6= 0 we must have σ(i) ≥ i. But the only

permutation which has this property is the identity permutation which has positive signum. So detA =
∏
ai,i. I included

this just as an example since I claimed this definition gives you many better and more direct proofs.]

5 5.1 # 11

• (a) If A = Q−1(λI)Q then A = λIQ−1Q = λI.

• (b) Let b1, · · · , bn be a basis of eigenvectors (which by assumption have the same eigenvalue). Then any vector v =
∑
aibi

has Av =
∑
aiAbi =

∑
aiλbi = λ

∑
aibI = λv. So Av = λIv for all v and hence A = λI. [For example, apply this

with v ranging over the standard basis.]

[Alternate proof: [A]β is diagonal and hence upper triangular. Applying exercise 9 shows that all the diagonal entries
are the same, so that [A]β = λI and hence A ∼ λI and part (a) gives the result.]

• (c) The only eigenvalue of this matrix is 1 by exercise 9, and by part (b) if the matrix were diagonalizable it would be
a scalar matrix which it isn’t.

6 5.1 # 12

• (a) det(Q−1AQ− λI) = det(Q−1AQ−Q−1λIQ) = det(Q−1(A− λI)Q) = det(Q−1) det(A− λI) det(Q) = det(A− λI).

[Using implicitly that det(Q−1) = (det(Q))−1. To prove write det(I) = 1 = det(Q−1Q) = det(Q−1) det(Q).]

• (b) Different matrix representations of the same operator are similar. I.e. [T ]β ∼ [T ]γ for any bases β, γ. Result follows
by (a).

7 5.1 # 14

det(At − λI) = det((A− λI)t) = det(A− λI).

[Because (λI)t = λI.]

8 5.1 # 20

f(t) = det(A− tI) so f(0) = det(A− 0 · I) = det(A). A is invertible ⇔ det(A) = f(0) = a0 6= 0.
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