Solutions to HW9

assigned by prof. Nadler

1 5.1 # 3a

- 1. The characteristic polynomial is $det(A \lambda I) = det \begin{pmatrix} 1 \lambda & 2 \\ 3 & 2 \lambda \end{pmatrix} = (1 \lambda)(2 \lambda) 6 = \lambda^2 3\lambda 4$. The roots are $\lambda = -1$ and $\lambda = 4$ and these are precisely the eigenvalues of A.
- 2. The $\lambda = -1$ eigenspace is span $\{(-1,1)^t\}$. Indeed, the system (A (-1)I)x = 0 is

$$\left(\begin{array}{cc|c} 2 & 2 & 0 \\ 3 & 3 & 0 \end{array}\right) \Rightarrow \left(\begin{array}{cc|c} 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

so we can take x_2 to be a free variable and $x_1 = -x_2$, so the solution space is the set of all vectors of the form $(-x_2, x_2)^t$, i.e., the aforementioned span.

Similarly, the $\lambda = 4$ eigenspace is span $\{(2,3)^t\}$. This comes from the system

$$\left(\begin{array}{cc|c} -3 & 2 & 0\\ 3 & -2 & 0 \end{array}\right) \Rightarrow \left(\begin{array}{cc|c} 1 & -\frac{2}{3} & 0\\ 0 & 0 & 0 \end{array}\right)$$

so that x_2 is free and $x_1 = (2/3)x_2$. Slap an $x_2 = 3$ in there to get an integer vector $(2,3)^t$ as claimed.

- 3. These vectors correspond to distinct eigenvalues and so are linearly independent. Hence $\beta = \{(-1, 1)^t, (2, 3)^t\} := \{b_1, b_2\}$ is a basis of eigenvectors.
- 4. The calculations $Ab_1 = -b_1$ and $Ab_2 = 4b_2$ show that $[A]_{\beta} = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}$. (Perhaps the book would rather us write $[L_A]_{\beta}$.) If σ is the standard basis of \mathbf{F}^2 , then of course $[\mathrm{Id}]_{\beta}^{\sigma}[A]_{\beta}[\mathrm{Id}_{\sigma}^{\beta} = [A]_{\sigma} = A$. So the $Q^{-1} = [\mathrm{Id}]_{\beta}^{\sigma}$ which is easy to compute: run through the vectors of β and express them in terms of σ but since σ is the standard basis this is very easy $[b_1]_{\sigma} = b_1 = (-1, 1)^t$ and $[b_2]_{\sigma} = b_2 = (2, 3)^t$. So $Q^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$. Using the inverse formula we have $Q = \begin{pmatrix} -3/5 & 2/5 \\ 1/5 & 1/5 \end{pmatrix}$. So the diagonalization is $\begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} -3/5 & 2/5 \\ 1/5 & 1/5 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$

2 5.1 # 5

 $(T - \lambda I)v = 0 \Leftrightarrow Tv - \lambda Iv = 0 \Leftrightarrow Tv = \lambda v$. (In conjunction with $v \neq 0$ the equation on the left is " $v \in N(T - \lambda I)$ & $v \neq 0$ " and the one on the right is "v is an eigenvector with eigenvalue λ .")

$3 \quad 5.1 \ \# \ 8$

• (a) A linear operator on a finite dimensional vector space is not invertible if and only if it has a nontrivial nullspace (by the dimension theorem - and note that this is not necessarily true in infinite dimensions). Having a nontrivial nullspace amounts to the existence of a nonzero v such that $Tv = 0 = 0 \cdot v$, i.e., a $\lambda = 0$ eigenvector.

[Alternate proof: 0 is an eigenvalue \Leftrightarrow 0 is a root of the characteristic polynomial $\Leftrightarrow \det([L]_{\beta} - 0(I)) = \det([L]_{\beta}) = 0$ $\Leftrightarrow L$ not invertible.]

• (b) If $v \neq 0$ and $Tv = \lambda v$, then λ must not be zero (lest T be singular). Then $v = \lambda T^{-1}v$ and so we can divide by λ to get $\lambda^{-1}v = T^{-1}v$ which shows that λ^{-1} is an eigenvalue of T^{-1} . The result follows by symmetry.

• (c) A matrix A is singular if and only if 0 is not an eigenvalue of L_A . [Proof: A is singular $\Leftrightarrow L_A$ is not invertible $\Leftrightarrow 0$ not an eigenvalue of L_A (using part (a)).]

If A is invertible and λ is an eigenvalue of L_A then λ^{-1} is an eigenvalue of $L_A^{-1} = L_{A^{-1}}$. [Proof: If A is invertible then L_A is invertible and by (b) λ is an eigenvalue of L_A if and only if λ^{-1} is an eigenvalue of L_A^{-1} .

4 5.1 # 9

If A is diagonal, then
$$\det(A - \lambda I) = \det \begin{pmatrix} a_{1,1} - \lambda & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} - \lambda & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{n,n} - \lambda \end{pmatrix} = \prod_{i=1}^{n} (a_{i,i} - \lambda).$$
 The roots of this polynomial

are precisely the values on the diagonal.

[I am implicitly using a theorem here, that if A is upper triangular the determinant is the product of the entries on the diagonal. With expansion by minors one can prove this by induction (e.g. expand along the first column det $A = a_{1,1} \det(A_{1,1}) + 0 \cdot (\cdots)$ and note that $A_{1,1}$ (the $(n-1) \times (n-1)$ minor which omits the first row and column) is still upper triangular). With the cooler definition det $A = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n a_{i,\sigma(i)}$ note that in order for all of $a_{i,\sigma(i)} \neq 0$ we must have $\sigma(i) \geq i$. But the only permutation which has this property is the identity permutation which has positive signum. So det $A = \prod a_{i,i}$. I included this just as an example since I claimed this definition gives you many better and more direct proofs.]

5 5.1 # 11

- (a) If $A = Q^{-1}(\lambda I)Q$ then $A = \lambda IQ^{-1}Q = \lambda I$.
- (b) Let b_1, \dots, b_n be a basis of eigenvectors (which by assumption have the same eigenvalue). Then any vector $v = \sum a_i b_i$ has $Av = \sum a_i Ab_i = \sum a_i \lambda b_i = \lambda \sum a_i b_I = \lambda v$. So $Av = \lambda Iv$ for all v and hence $A = \lambda I$. [For example, apply this with v ranging over the standard basis.]

[Alternate proof: $[A]_{\beta}$ is diagonal and hence upper triangular. Applying exercise 9 shows that all the diagonal entries are the same, so that $[A]_{\beta} = \lambda I$ and hence $A \sim \lambda I$ and part (a) gives the result.]

• (c) The only eigenvalue of this matrix is 1 by exercise 9, and by part (b) if the matrix were diagonalizable it would be a scalar matrix which it isn't.

$6 \quad 5.1 \ \# \ 12$

- (a) $\det(Q^{-1}AQ \lambda I) = \det(Q^{-1}AQ Q^{-1}\lambda IQ) = \det(Q^{-1}(A \lambda I)Q) = \det(Q^{-1})\det(A \lambda I)\det(Q) = \det(A \lambda I).$ [Using implicitly that $\det(Q^{-1}) = (\det(Q))^{-1}.$ To prove write $\det(I) = 1 = \det(Q^{-1}Q) = \det(Q^{-1})\det(Q).$]
- (b) Different matrix representations of the same operator are similar. I.e. $[T]_{\beta} \sim [T]_{\gamma}$ for any bases β, γ . Result follows by (a).

7 5.1 # 14

 $det(A^t - \lambda I) = det((A - \lambda I)^t) = det(A - \lambda I).$ [Because $(\lambda I)^t = \lambda I.$]

$8 \quad 5.1 \ \# \ 20$

 $f(t) = \det(A - tI)$ so $f(0) = \det(A - 0 \cdot I) = \det(A)$. A is invertible $\Leftrightarrow \det(A) = f(0) = a_0 \neq 0$.