Solutions to HW9

assigned by prof. Nadler

$1 \quad 5.1$ \# 3a

1. The characteristic polynomial is $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}1-\lambda & 2 \\ 3 & 2-\lambda\end{array}\right)=(1-\lambda)(2-\lambda)-6=\lambda^{2}-3 \lambda-4$. The roots are $\lambda=-1$ and $\lambda=4$ and these are precisely the eigenvalues of A.
2. The $\lambda=-1$ eigenspace is $\operatorname{span}\left\{(-1,1)^{t}\right\}$. Indeed, the system $(A-(-1) I) x=0$ is

$$
\left(\begin{array}{ll|l}
2 & 2 & 0 \\
3 & 3 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so we can take x_{2} to be a free variable and $x_{1}=-x_{2}$, so the solution space is the set of all vectors of the form $\left(-x_{2}, x_{2}\right)^{t}$, i.e., the aforementioned span.

Similarly, the $\lambda=4$ eigenspace is $\operatorname{span}\left\{(2,3)^{t}\right\}$. This comes from the system

$$
\left(\begin{array}{cc|c}
-3 & 2 & 0 \\
3 & -2 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{cc|c}
1 & -\frac{2}{3} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so that x_{2} is free and $x_{1}=(2 / 3) x_{2}$. Slap an $x_{2}=3$ in there to get an integer vector $(2,3)^{t}$ as claimed.
3. These vectors correspond to distinct eigenvalues and so are linearly independent. Hence $\left.\left.\beta=\left\{(-1,1)^{t},(2,3)^{t}\right\}:=\right\} b_{1}, b_{2}\right\}$ is a basis of eigenvectors.
4. The calculations $A b_{1}=-b_{1}$ and $A b_{2}=4 b_{2}$ show that $[A]_{\beta}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 4\end{array}\right)$. (Perhaps the book would rather us write $\left[L_{A}\right]_{\beta}$.) If σ is the standard basis of \mathbf{F}^{2}, then of course $[\operatorname{Id}]_{\beta}^{\sigma}[A]_{\beta}\left[\mathrm{Id}_{\sigma}^{\beta}=[A]_{\sigma}=A\right.$. So the $Q^{-1}=[\mathrm{Id}]_{\beta}^{\sigma}$ which is easy to compute: run through the vectors of β and express them in terms of σ - but since σ is the standard basis this is very easy $\left[b_{1}\right]_{\sigma}=b_{1}=(-1,1)^{t}$ and $\left[b_{2}\right]_{\sigma}=b_{2}=(2,3)^{t}$. So $Q^{-1}=\left(\begin{array}{cc}-1 & 2 \\ 1 & 3\end{array}\right)$. Using the inverse formula we have $Q=\left(\begin{array}{cc}-3 / 5 & 2 / 5 \\ 1 / 5 & 1 / 5\end{array}\right)$. So the diagonalization is

$$
\left(\begin{array}{cc}
-1 & 2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 4
\end{array}\right)\left(\begin{array}{cc}
-3 / 5 & 2 / 5 \\
1 / 5 & 1 / 5
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
3 & 2
\end{array}\right)
$$

$2 \quad 5.1 \# 5$

$(T-\lambda I) v=0 \Leftrightarrow T v-\lambda I v=0 \Leftrightarrow T v=\lambda v$. (In conjunction with $v \neq 0$ the equation on the left is " $v \in N(T-\lambda I) \& v \neq 0$ " and the one on the right is " v is an eigenvector with eigenvalue λ.")

$3 \quad 5.1 \# 8$

- (a) A linear operator on a finite dimensional vector space is not invertible if and only if it has a nontrivial nullspace (by the dimension theorem - and note that this is not necessarily true in infinite dimensions). Having a nontrival nullspace amounts to the existence of a nonzero v such that $T v=0=0 \cdot v$, i.e., a $\lambda=0$ eigenvector.
[Alternate proof: 0 is an eigenvalue $\Leftrightarrow 0$ is a root of the characteristic polynomial $\Leftrightarrow \operatorname{det}\left([L]_{\beta}-0(I)\right)=\operatorname{det}\left([L]_{\beta}\right)=0$ $\Leftrightarrow L$ not invertible.]
- (b) If $v \neq 0$ and $T v=\lambda v$, then λ must not be zero (lest T be singular). Then $v=\lambda T^{-1} v$ and so we can divide by λ to get $\lambda^{-1} v=T^{-1} v$ which shows that λ^{-1} is an eigenvalue of T^{-1}. The result follows by symmetry.
- (c) A matrix A is singular if and only if 0 is not an eigenvalue of L_{A}. [Proof: A is singular $\Leftrightarrow L_{A}$ is not invertible $\Leftrightarrow 0$ not an eigenvalue of L_{A} (using part (a)).]
If A is invertible and λ is an eigenvalue of L_{A} then λ^{-1} is an eigenvalue of $L_{A}^{-1}=L_{A^{-1}}$. [Proof: If A is invertible then L_{A} is invertible and by (b) λ is an eigenvalue of L_{A} if and only if λ^{-1} is an eigenvalue of L_{A}^{-1}.

$4 \quad 5.1 \# 9$

If A is diagonal, then $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cccc}a_{1,1}-\lambda & a_{1,2} & \cdots & a_{1, n} \\ 0 & a_{2,2}-\lambda & \cdots & a_{2, n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{n, n}-\lambda\end{array}\right)=\prod_{i=1}^{n}\left(a_{i, i}-\lambda\right)$. The roots of this polynomial are precisely the values on the diagonal.
[I am implicitly using a theorem here, that if A is upper triangular the determinant is the product of the entries on the diagonal. With expansion by minors one can prove this by induction (e.g. expand along the first column $\operatorname{det} A=a_{1,1} \operatorname{det}\left(A_{1,1}\right)+0 \cdot(\cdots)$ and note that $A_{1,1}$ (the $(n-1) \times(n-1)$ minor which omits the first row and column) is still upper triangular). With the cooler definition $\operatorname{det} A=\sum_{\sigma \in S_{n}}(-1)^{\sigma} \prod_{i=1}^{n} a_{i, \sigma(i)}$ note that in order for all of $a_{i, \sigma(i)} \neq 0$ we must have $\sigma(i) \geq i$. But the only permutation which has this property is the identity permutation which has positive signum. So $\operatorname{det} A=\prod a_{i, i}$. I included this just as an example since I claimed this definition gives you many better and more direct proofs.]

$5 \quad 5.1 \# 11$

- (a) If $A=Q^{-1}(\lambda I) Q$ then $A=\lambda I Q^{-1} Q=\lambda I$.
- (b) Let b_{1}, \cdots, b_{n} be a basis of eigenvectors (which by assumption have the same eigenvalue). Then any vector $v=\sum a_{i} b_{i}$ has $A v=\sum a_{i} A b_{i}=\sum a_{i} \lambda b_{i}=\lambda \sum a_{i} b_{I}=\lambda v$. So $A v=\lambda I v$ for all v and hence $A=\lambda I$. [For example, apply this with v ranging over the standard basis.]
[Alternate proof: $[A]_{\beta}$ is diagonal and hence upper triangular. Applying exercise 9 shows that all the diagonal entries are the same, so that $[A]_{\beta}=\lambda I$ and hence $A \sim \lambda I$ and part (a) gives the result.]
- (c) The only eigenvalue of this matrix is 1 by exercise 9 , and by part (b) if the matrix were diagonalizable it would be a scalar matrix which it isn't.

$6 \quad 5.1 \# 12$

- (a) $\operatorname{det}\left(Q^{-1} A Q-\lambda I\right)=\operatorname{det}\left(Q^{-1} A Q-Q^{-1} \lambda I Q\right)=\operatorname{det}\left(Q^{-1}(A-\lambda I) Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(Q)=\operatorname{det}(A-\lambda I)$.
[Using implicitly that $\operatorname{det}\left(Q^{-1}\right)=(\operatorname{det}(Q))^{-1}$. To prove write $\operatorname{det}(I)=1=\operatorname{det}\left(Q^{-1} Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(Q)$.]
- (b) Different matrix representations of the same operator are similar. I.e. $[T]_{\beta} \sim[T]_{\gamma}$ for any bases β, γ. Result follows by (a).

$7 \quad 5.1$ \# 14

$\operatorname{det}\left(A^{t}-\lambda I\right)=\operatorname{det}\left((A-\lambda I)^{t}\right)=\operatorname{det}(A-\lambda I)$.
[Because $(\lambda I)^{t}=\lambda I$.]

$8 \quad 5.1$ \# 20

$f(t)=\operatorname{det}(A-t I)$ so $f(0)=\operatorname{det}(A-0 \cdot I)=\operatorname{det}(A) . A$ is invertible $\Leftrightarrow \operatorname{det}(A)=f(0)=a_{0} \neq 0$.

