Solution to HW8

4.3.15 If A and B are similar, then $A=Q^{-1} B Q$ for some invertible Q. Taking determinants and using Thm 4.7 (and its corollary) gives

$$
\operatorname{det} A=\operatorname{det} Q^{-1} \operatorname{det} B \operatorname{det} Q=\frac{1}{\operatorname{det} Q} \operatorname{det} B \operatorname{det} Q=\operatorname{det} B
$$

4.3.21 We use induction on n. The base case ${ }^{1}$ is when $n=2$, in which case $M=\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)$ for some $a, b, c \in \mathbb{F}$. Then $\operatorname{det} M=a c$, as desired.

Now suppose the result holds for matrices of the given form and of size $(n-1) \times(n-1)$, and let M be an $n \times n$ matrix of the given form. Performing a cofactor expansion along the first column gives

$$
\operatorname{det} M=\sum_{i=1}^{n}(-1)^{i+1} M_{i 1} \widetilde{M_{i 1}} .
$$

Letting A have size $k \times k$, then we have for $i>k$ that $M_{i 1}=0$ by the block-upper-triangular form of M. Thus

$$
\operatorname{det} M=\sum_{i=1}^{k}(-1)^{i+1} M_{i 1} \widetilde{M_{i 1}} .
$$

But for $i \leq k$, the matrix $\widetilde{M_{i 1}}$ is of the form

$$
\widetilde{M_{i 1}}=\left(\begin{array}{cc}
\widetilde{A_{i 1}} & \widetilde{B} \\
0 & C
\end{array}\right)
$$

where \widetilde{B} is obtained from B by deleting the i th row (in fact, it doesn't actually matter what \widetilde{B} is). Since this has size $(n-1) \times(n-1)$, the induction hypothesis applies, giving that $\operatorname{det} \widetilde{M_{i 1}}=$ $\operatorname{det} \widetilde{A_{i 1}} \operatorname{det} C$. Putting this back in the formula above for $\operatorname{det} M$ gives

$$
\operatorname{det} M=\sum_{i=1}^{k}(-1)^{i+1} \operatorname{det} \widetilde{A_{i 1}} \operatorname{det} C=\left(\sum_{i=1}^{k}(-1)^{i+1} \operatorname{det} \widetilde{A_{i 1}}\right) \operatorname{det} C=\operatorname{det} A \operatorname{det} C,
$$

which completes the induction step. Thus the result holds for all $n \geq 2$.

[^0]
[^0]: ${ }^{1}$ In case $n=1$, the statement is vacuous, so we begin at $n=2$.

