Solutions to Homework \#7.

Section 3.3

2. (a) Row reducing we get the matrix $\left(\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right)$ so by letting $x_{2}=t_{1}$ we have $x_{1}+3 t_{1}=0$ which forces $x_{1}=-3 t_{1}$. Therefore solutions will look like $t_{1}\binom{-3}{1}$. A basis for the solutions is $\left\{\binom{-3}{1}\right\}$ and the dimension is 1 .
(b) Row reducing we get $\left(\begin{array}{lll}1 & 0 & -1 / 3 \\ 0 & 1 & -2 / 3\end{array}\right)$. Letting $x_{3}=t_{1}$ we see that $x_{1}=1 / 3 t_{1}$ and $x_{2}=2 / 3 t_{1}$. Thus, a basis for the solution set is $\left\{\left(\begin{array}{c}1 / 3 \\ 2 / 3 \\ 1\end{array}\right)\right\}$ and the dimension is 1 .
3. (a) First note that $x_{1}=5, x_{2}=0$ is a particular solution of the system. By exercise 2 (a) the solutions to the system will look like $\binom{5}{0}+t_{1}\binom{-3}{1}$ for any $t_{1} \in \mathbb{R}$.
(b) First note that $x_{1}=0, x_{2}=-1, x_{3}=-2$ is a particular solution. By exercise 2 (b) the solutions to the system will look like $\left(\begin{array}{c}0 \\ -1 \\ -2\end{array}\right)+t_{1}\left(\begin{array}{c}1 / 3 \\ 2 / 3 \\ 1\end{array}\right)$ for any $t_{1} \in \mathbb{R}$.
4. (a) The extended matrix is $\left(\begin{array}{cccc}1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ 1 & 0 & 2 & -2\end{array}\right)$ which after row operations becomes $\left(\begin{array}{cccc}1 & 0 & 2 & -2 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$.

The coefficient matrix and the extended matrix both have rank 2 so the system has solutions.
(b) The same procedure as in part (a) shows that the coefficient matrix and the extended matrix both have rank 2 and the system is consistent.
10. Let A be the coefficient matrix. The extended matrix is $A \mid b$. Note that since $A \mid b$ is $m \times(n+1)$ it must satisfy $\operatorname{rank}(A \mid b) \leq m$. On the other hand, adding one extra column to A cannot decrease the rank so $\operatorname{rank}(A \mid b) \geq \operatorname{rank}(A)=m$. Therefore, $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)=m$ and by a theorem from the book the system has solutions.

Section 3.4
3. (a) Row reducing the extended matrix one has $\left(\begin{array}{cccc}1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -1\end{array}\right)$ so the solution is $\left(\begin{array}{c}4 \\ -3 \\ -1\end{array}\right)$.
(f) Just like in part (a) we row-reduce the extended matrix to get $\left(\begin{array}{ccccc}1 & 0 & 0 & -1 & -3 \\ 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & 1\end{array}\right)$. This forces $x_{3}=1$ and if we let $x_{4}=t_{1}$ we get $x_{1}=-3+t_{1}, x_{2}=3-3 t_{1}$. The solutions therefore look
like $\left\{\left(\begin{array}{c}-3 \\ 3 \\ 1 \\ 0\end{array}\right)+t_{1}\left(\begin{array}{c}1 \\ -3 \\ 0 \\ 1\end{array}\right)\right\}$.
8. Row reducing the matrix with columns u_{1}, \ldots, u_{8} we have $\left(\begin{array}{cccccccc}1 & -3 & 0 & 4 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -4 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$. Looking at the pivot columns we find the basis to be $\left\{u_{1}, u_{3}, u_{5}, u_{7}\right\}$.
12. (a) It is immediate to see that S consists of linearly independent vectors which satisfy our two equations.
(b) First let us find a basis for the solution set. The coefficient matrix is $\left(\begin{array}{cccccc}1 & -1 & 0 & 2 & -3 & 1 \\ 2 & -1 & -1 & 3 & -4 & 4\end{array}\right)$. The row reduced form is $\left(\begin{array}{cccccc}1 & 0 & -1 & 1 & -1 & 3 \\ 0 & 1 & -1 & -1 & 2 & 2\end{array}\right)$. This forces $x_{1}=t_{1}-t_{2}+t_{3}-3 t_{4}, x_{2}=$ $t_{1}+t_{2}-2 t_{3}-2 t_{4}$ so a basis for the solutions will be $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-3 \\ -2 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$. Construct a new matrix with the first columns the vectors from S and the rest of the columns the basis elements we just found. This matrix will be $\left(\begin{array}{cccccc}0 & 1 & 1 & -1 & 1 & -3 \\ -1 & 0 & 1 & 1 & -2 & -2 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$. The row reduced form of this matrix is $\left(\begin{array}{cccccc}1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$ so by looking at the pivot columns we can find that the extra two vectors we need for the basis are $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-3 \\ -2 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$.

