Solutions to Homework #7.

Section 3.3

2. (a) Row reducing we get the matrix $\begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$ so by letting $x_2 = t_1$ we have $x_1 + 3t_1 = 0$ which forces $x_1 = -3t_1$. Therefore solutions will look like $t_1 \begin{pmatrix} -3 \\ 1 \end{pmatrix}$. A basis for the solutions is $\left\{ \begin{pmatrix} -3 \\ 1 \end{pmatrix} \right\}$ and the dimension is 1. (b) Row reducing we get $\begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & -2/3 \end{pmatrix}$. Letting $x_3 = t_1$ we see that $x_1 = 1/3t_1$ and $x_2 = 2/3t_1$.

Thus, a basis for the solution set is $\left\{ \begin{pmatrix} 1/3\\ 2/3\\ 1 \end{pmatrix} \right\}$ and the dimension is 1.

3. (a) First note that $x_1 = 5, x_2 = 0$ is a particular solution of the system. By exercise 2 (a) the

solutions to the system will look like $\binom{5}{0} + t_1 \binom{-3}{1}$ for any $t_1 \in \mathbb{R}$. (b) First note that $x_1 = 0, x_2 = -1, x_3 = -2$ is a particular solution. By exercise 2 (b) the solutions to the system will look like $\binom{0}{-1} + t_1 \binom{1/3}{2/3}_1$ for any $t_1 \in \mathbb{R}$.

8. (a) The extended matrix is
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ 1 & 0 & 2 & -2 \end{pmatrix}$$
 which after row operations becomes $\begin{pmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

The coefficient matrix and the extended matrix both have rank 2 so the system has solutions.

(b) The same procedure as in part (a) shows that the coefficient matrix and the extended matrix both have rank 2 and the system is consistent.

10. Let A be the coefficient matrix. The extended matrix is A|b. Note that since A|b is $m \times (n+1)$ it must satisfy rank $(A|b) \leq m$. On the other hand, adding one extra column to A cannot decrease the rank so rank $(A|b) \ge \operatorname{rank}(A) = m$. Therefore, rank $(A) = \operatorname{rank}(A|b) = m$ and by a theorem from the book the system has solutions.

Section 3.4

3. (a) Row reducing the extended matrix one has
$$\begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$
 so the solution is $\begin{pmatrix} 4 \\ -3 \\ -1 \end{pmatrix}$.
(f) Just like in part (a) we row-reduce the extended matrix to get $\begin{pmatrix} 1 & 0 & 0 & -1 & -3 \\ 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$. This forces $x_3 = 1$ and if we let $x_4 = t_1$ we get $x_1 = -3 + t_1, x_2 = 3 - 3t_1$. The solutions therefore look

like $\left\{ \begin{pmatrix} -3\\3\\1\\0 \end{pmatrix} + t_1 \begin{pmatrix} 1\\-3\\0\\1 \end{pmatrix} \right\}$.

8.	Row reducing the matrix with columns u_1, \ldots, u_8 we have

/1	-3	0	4	0	1	0	$\begin{pmatrix} -1\\ 1\\ -2\\ -1\\ 0 \end{pmatrix}$.		
0	0	1	-2	0	-2	0	1		
0	0	0	0	1	-4	0	-2 .		
0	0	0	0	0	0	1	-1		
$\setminus 0$	0	0	0	0	0	0	0 /		

Looking at the pivot columns we find the basis to be $\{u_1, u_3, u_5, u_7\}$.

12. (a) It is immediate to see that S consists of linearly independent vectors which satisfy our two equations.

(b) First let us find a basis for the solution set. The coefficient matrix is $\begin{pmatrix} 1 & -1 & 0 & 2 & -3 & 1 \\ 2 & -1 & -1 & 3 & -4 & 4 \end{pmatrix}$. The row reduced form is $\begin{pmatrix} 1 & 0 & -1 & 1 & -1 & 3 \\ 0 & 1 & -1 & -1 & 2 & 2 \end{pmatrix}$. This forces $x_1 = t_1 - t_2 + t_3 - 3t_4, x_2 = t_1 - t_2 + t_3 - 3t_4$. $t_1 + t_2 - 2t_3 - 2t_4 \text{ so a basis for the solutions will be} \left\{ \begin{pmatrix} 1\\1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\-2\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\-2\\0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} -3\\-2\\0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} -3\\-2\\0\\0\\0\\1 \end{pmatrix} \right\}. \text{ Construct}$

a new matrix with the first columns the vectors from S and the rest of the columns the basis elements we just found. This matrix will be $\begin{pmatrix} 0 & 1 & 1 & -1 & 1 & -3 \\ -1 & 0 & 1 & 1 & -2 & -2 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & -1 \end{pmatrix}$. The row reduced form

extra two vectors we need for the basis are
$$\left\{ \begin{pmatrix} -1\\1\\0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -3\\-2\\0\\0\\0\\1\\1 \end{pmatrix} \right\}.$$